面向国产通用DSP的卷积神经网络并行算法研究
结题报告
批准号:
62002365
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
王庆林
学科分类:
计算机系统结构与硬件技术
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
王庆林
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
卷积神经网络广泛应用于图像识别、语音识别、自然语言处理等领域,其训练非常耗时。在美国芯片限售令的封锁下,国防科大自主研制的通用数字信号处理器GPDSP不仅将加速成为传统高性能领域里进口加速器芯片的替代,也有望在深度学习领域作为高性能GPU的一种有效替代来加速深度学习的训练。本项目以国产GPDSP为研究平台,研究卷积神经网络并行算法,提出隐式矩阵乘卷积多级并行算法、基于任务池调度的直接卷积多级并行算法以及基于融合的快速卷积多级并行算法来实现国产GPDSP上的高性能卷积计算;提出基于支持向量机分类模型与试运行相结合的卷积算子自动配置算法,以较低的开销实现最佳性能卷积算法的自动选择;最终构建国产GPDSP上的高性能卷积神经网络库,为基于国产GPDSP的深度学习应用开发降低难度,加快训练速度,促进国产GPDSP的发展和推广应用。
英文摘要
Convolutional neural networks (CNNs) are widely used in various applications such as image recognition, speech recognition and natural language processing, and their training is very time-consuming. Due to Chip Restricted Order from USA, General Purpose Digital Signal Processing (GPDSP) chips independently developed by National University of Defense Technology would replace the import accelerator chips in the fields of both high-performance computing and deep learning. This project takes the domestic GPDSP as the research platform to study parallel algorithms of convolutional neural networks, and proposes an implicit matrix multiplication convolution multi-level parallel algorithm, a direct convolution multi-level parallel algorithm based on task pool scheduling and a fusion-based fast convolution multi-level parallel algorithm for maximizing the performance of convolution on the domestic GPDSP, and then an convolution auto-configuration algorithm based on the combination of the support vector machine classification model and the trial run for getting the best convolution algorithm with low overhead. Finally, a high-performance convolutional neural network library will be created to reduce the difficulty of developing CNNs applications, speed up their training, and promote the development as well as the popularization for the domestic GPDSP.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.11887/j.cn.202301006
发表时间:2023
期刊:国防科技大学学报
影响因子:--
作者:裴向东;王庆林;廖林玉;李荣春;梅松竹;刘杰;庞征斌
通讯作者:庞征斌
DOI:10.1007/s42514-023-00166-8
发表时间:2023
期刊:CCF Transactions on High Performance Computing
影响因子:0.9
作者:Yang Wang;Qinglin Wang;Xiangdong Pei;Songzhu Mei;Rongchun Li;Jie Liu
通讯作者:Jie Liu
DOI:10.11887/j.cn.202301009
发表时间:2023
期刊:国防科技大学学报
影响因子:--
作者:王庆林;裴向东;廖林玉;王浩旭;李荣春;梅松竹;李东升
通讯作者:李东升
DOI:10.1016/j.peva.2021.102248
发表时间:2021
期刊:Performance Evaluation
影响因子:--
作者:Xiandong Huang;Qinglin Wang;Shuyu Lu;Ruochen Hao;Songzhu Mei;Jie Liu
通讯作者:Jie Liu
国内基金
海外基金