量化Domain理论中笛卡尔闭范畴及Scott拓扑的研究
结题报告
批准号:
12001413
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
马娜娜
依托单位:
学科分类:
信息技术与不确定性的数学理论与方法
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
马娜娜
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
量化Domain理论是把指称语义的Domain理论与度量方法深度结合的一种理论,其本质在于寻找一类能够计算的模型结构,这类模型结构对于研究计算机科学中的并发式语言有着重要的意义。近年来,量化Domain理论发展迅速,但关于模糊有界完备domain范畴的笛卡尔闭性及其Scott拓扑等问题还尚无涉及。对这些内容的研究不仅能进一步拓展量化Domain理论,还能在解决并发式语言的相关问题中起着重要作用。基于此,本项目将借助模糊集和enriched范畴理论,探究量化Domain理论中的笛尔闭范畴及Scott拓扑,拟研究以下四个专题: (1)模糊有界完备domain的理想完备化;(2)模糊有界完备domain范畴的笛卡尔闭性;(3)模糊Scott-domain范畴的笛卡尔闭性;(4)模糊有界完备domain上Scott拓扑的等价刻画。
英文摘要
Quantitative domain theory is regarded as the deep combination of denotational semantics of domain theory and the method of measurement. Its essence is to find a kind of model structure which can be calculated. This kind of model structure has important significance for the research of concurrent language in computer science. In recent years, quantitative domain theory has developed rapidly, but the problems of cartesian closed and Scott topology of fuzzy bounded complete domain categories have not been involved. The study of these contents can not only expand the quantitative domain theory, but also play an important role in solving the related problems of concurrent language. Based on these, this project will use fuzzy set and enriched category theory to explore the properties of cartesian closed categories and Scott topology of quantitative domain theory. The concrete contents of this project include: (1) the ideal completion of fuzzy bounded complete domain. (2) the cartesian closed property of the category of fuzzy bounded complete domain. (3) the cartesian closed property of the category of fuzzy Scott-domain. (4) the equivalent characterization of the Scott topology on fuzzy bounded complete domain.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:--
发表时间:2021
期刊:Italian Journal of Pure and Applied Mathematics
影响因子:0.2
作者:Mei Wang;Nana Ma;Nan Jiang;Juntao Wang
通讯作者:Juntao Wang
DOI:10.3934/math.2022421
发表时间:2022
期刊:AIMS Mathematics
影响因子:2.2
作者:Nana Ma;Qingjun Luo;Gening Xu
通讯作者:Nana Ma;Qingjun Luo;Gening Xu
DOI:10.1007/s11225-022-10026-1
发表时间:2022-11
期刊:Studia Logica
影响因子:0.7
作者:Jun Tao Wang;Yanhong She;Pengfei He;NaNa Ma
通讯作者:Jun Tao Wang;Yanhong She;Pengfei He;NaNa Ma
DOI:--
发表时间:2021
期刊:四川师范大学学报(自然科学版)
影响因子:--
作者:马娜娜;罗清君
通讯作者:罗清君
DOI:10.1088/1742-6596/2650/1/012001
发表时间:2023-11
期刊:Journal of Physics: Conference Series
影响因子:--
作者:Nan Jiang;Nana Ma;Wei Li;Fei Li
通讯作者:Nan Jiang;Nana Ma;Wei Li;Fei Li
国内基金
海外基金