Spark平台下基于深层次特征表示及双向长短时记忆模型的潜在药物-靶标相互作用预测研究

批准号:
62002297
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
陈沾衡
依托单位:
学科分类:
生物信息计算与数字健康
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
陈沾衡
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
药物-靶标相互作用的识别对于药物重定位、新药研发及药物毒副作用等领域都具有非常重要的意义。然而,受制于通量、精度和成本的影响,传统的生物实验方法通常难以完成大规模药物-靶标相互作用关系的识别。随着生物信息学的迅速蓬勃发展,计算机辅助的靶标识别预测方法越来越受到重视,发展快速、精确的靶标识别方法为创新药物先导结构的发现及筛选提供了一种有效手段。本项目拟在Spark平台下整合药物分子指纹结构信息和靶标蛋白氨基酸序列信息,构建基于深层次特征表示及双向长短时记忆模型对潜在药物-靶标相互作用进行预测研究。首先,研究药物分子及靶标蛋白氨基酸序列向量化编码新方法;然后,采用基于变分自动编码器神经网络模型对药物-靶标蛋白对的深层特征进行表征;最后,在Spark并行化计算平台下构建双向长短时记忆模型,以快速、准确地预测药物-靶标相互作用。本项目研究将为创新药物设计提供理论指导和高可信的数据支撑。
英文摘要
Identifying drug-target interactions is crucial in drug repositioning, innovative drug discovery and development, adverse side-effects of drugs and other fields. However, traditional biological experimental methods are difficult to predict large-scale drug-target interactions due to the limitations of throughput, accuracy and cost. With the rapid development of bioinformatics, the computational methods are more and more widely used in drug-target interaction predictions, which can provide an effective means for the discovery and screening of lead compounds. In this project, we explicitly attempt to propose a new method for predicting drug-target interactions based on the Spark parallel platform by combining the structure of drug molecular fingerprints and the information of amino acid sequences. Firstly, a new coding method is proposed for representing drug molecules and amino acid sequences of target proteins. Secondly, the variational autoencoder method is developed to characterize deep features of the essential attributes of data. Finally, the bi-directional long short-term memory model is developed to predict drug-target interactions on the Spark parallel platform. This project will provide highly reliable data support and theoretical basis for target drug design.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
Predicting transcription factor binding sites using DNA shape features based on shared hybrid deep learning architecture.
基于共享混合深度学习架构使用 DNA 形状特征预测转录因子结合位点
DOI:10.1016/j.omtn.2021.02.014
发表时间:2021-06-04
期刊:Molecular therapy. Nucleic acids
影响因子:--
作者:Wang S;Zhang Q;Shen Z;He Y;Chen ZH;Li J;Huang DS
通讯作者:Huang DS
DOI:10.1109/tcbb.2022.3180903
发表时间:2023-09-01
期刊:IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
影响因子:4.5
作者:Wang,Mei-Neng;Xie,Xue-Jun;Chen,Zhan-Heng
通讯作者:Chen,Zhan-Heng
DOI:10.1007/s11704-022-1563-1
发表时间:2022
期刊:Frontiers of Computer Science
影响因子:4.2
作者:Zhan-Heng Chen;Zhu-Hong You;Qin-Hu Zhang;Zhen-Hao Guo;Si-Guo Wang;Yan-Bin Wang
通讯作者:Yan-Bin Wang
DOI:10.1371/journal.pcbi.1009941
发表时间:2022-03
期刊:PLoS computational biology
影响因子:4.3
作者:Zhang Q;He Y;Wang S;Chen Z;Guo Z;Cui Z;Liu Q;Huang DS
通讯作者:Huang DS
DOI:10.1016/j.omtn.2023.04.030
发表时间:2023-06-13
期刊:MOLECULAR THERAPY NUCLEIC ACIDS
影响因子:--
作者:Chen, Zhan-Heng;Zhao, Bo-Wei;Li, Jian-Qiang;Guo, Zhen-Hao;You, Zhu-Hong
通讯作者:You, Zhu-Hong
国内基金
海外基金
