面向电力电子器件的低温低压高强度芯片连接技术研究

批准号:
62004144
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
刘俐
依托单位:
学科分类:
集成电路器件、制造与封装
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
刘俐
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
SiC电力电子器件是我国“新基建”战略的核心技术之一。目前主流SiC芯片连接技术往往引入有机溶剂、生成脆性相、强度低或连接温度及压力高,高温可靠性均存在明显缺陷。针对业内“低温低压连接、高温高强度服役”的迫切需求,本项目合成Cu@Ag核壳粉体,并利用电磁压制技术制备高残余应力的Cu@Ag预成型焊片,通过优化焊片质量和内部残余应力,实现Cu@Ag互连结构的低温、低压、高强度连接。同时结合高温原位表征技术、有限元仿真、分子动力学模拟,跨尺度揭示超高应力-温度耦合作用下Cu@Ag/Cu@Ag界面连接机制,深入理解热压连接下内应力、温度、载荷对Cu@Ag/Cu界面原子扩散迁移行为的影响规律。最后通过高温贮存试验、高低温循环试验,对比相同连接条件下的纳米银模块,验证基于该连接技术的Cu@Ag模块的高温服役可靠性。本研究对突破电力电子器件低温、低压、高强度连接技术具有重要的理论指导意义和工程应用价值。
英文摘要
SiC power electronic devices are one of the core technologies of China's "new infrastructure" strategy. At present, the main SiC die attach technologies often cause organic solvents residual, brittle phases formation, low strength bonding or high temperature and high pressure bonding. Therefore, their high temperature reliability have obvious drawbacks. A new bonding technology at low temperature and low pressure with high bonding strength and high service temperature is strongly demanded by the industry. In this project, Cu@Ag core-shell powders will be synthesized and then compressed into Cu@Ag solder preform with high residual stress by electromagnetic compaction. By optimizing the quality and residual stress of this solder preform, Cu@Ag die attachment with high strength can be fabricated under low temperature and low pressure joining conditions. Meanwhile, combining high-temperature in-situ microstructure characterization technology, finite element modelling and molecular dynamics simulation, the connection mechanism at Cu@Ag/Cu@Ag interface under ultra-high residual stress/temperature coupling effects can be revealed. Moreover, during thermal compression joining, the influence of internal stress, temperature, loading on the diffusion behaviors of atom at the Cu@Ag/Cu inerface will be understood. Finally, through the high-temperature storage test and high-low temperature cycle test, in comparison to the nano-silver power modules under the same joining condition, the high-temperature service reliability of the Cu@Ag power modules by electromagnetic compaction can be verified. This research shows important theoretical guiding significance and engineering application value in breaking through the joining technology for power electronic devices to achieve high bonding strength under low temperature and low pressure.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:--
发表时间:2023
期刊:Materials Characterization
影响因子:--
作者:Li Liu;Runze Shi;Shuye Zhang;Wei Liu;Shangyu Huang;Zhiwen Chen
通讯作者:Zhiwen Chen
Creep behavior of intermetallic compounds at elevated temperatures and its effect on fatigue life evaluation of Cu pillar bumps
金属间化合物高温蠕变行为及其对铜柱凸块疲劳寿命评价的影响
DOI:10.1016/j.intermet.2022.107526
发表时间:2022-05-01
期刊:INTERMETALLICS
影响因子:4.4
作者:Chen, Zhiwen;Yang, Fan;Liu, Li
通讯作者:Liu, Li
DOI:10.1016/j.jmatprotec.2021.117056
发表时间:2021-01-28
期刊:JOURNAL OF MATERIALS PROCESSING TECHNOLOGY
影响因子:6.3
作者:Tuo, Chengjiong;Yao, Zhenhua;Cao, Xueqiang
通讯作者:Cao, Xueqiang
DOI:--
发表时间:2023
期刊:Materials
影响因子:3.4
作者:Zixuan Xu;Xun Liu;Junjie Li;Rong Sun;Li Liu
通讯作者:Li Liu
DOI:10.1016/j.msea.2023.145097
发表时间:2023-04
期刊:Materials Science and Engineering: A
影响因子:--
作者:Li Liu;Wei Huang;Meng Ruan;Zhiwen Chen
通讯作者:Li Liu;Wei Huang;Meng Ruan;Zhiwen Chen
国内基金
海外基金
