课题基金基金详情
非线性Schrodinger方程耦合电磁理论的变分方法研究
结题报告
批准号:
12001198
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
黄文涛
依托单位:
学科分类:
非线性泛函分析
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
黄文涛
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
本项目主要研究非线性Schrodinger方程分别与Bopp-Podolsky电磁理论和Born-Infeld电磁理论的耦合系统,它与电动力学、超弦理论、膜理论和宇宙学等研究有密切的关系,由这些非线性科学问题引出的变分问题属于非线性分析的热点课题。本项目计划在变分框架下通过多种非线性分析方法研究:Schrodinger-Bopp-Podolsky系统变号解的存在性和多解性,以及其临界指数问题基态解的存在性;Schrodinger-Born-Infeld系统解的存在性,非存在性和多解性;解的渐近行为。由于耦合项的非齐次性,以至于很多标准的变分方法和分析技巧不能直接应用。此外,非线性项缺乏(AR)条件使得问题的研究更加复杂。这些困难的解决需要我们进一步发展出新的思想和方法,同时也将促进非线性分析理论与应用的发展。
英文摘要
This project is mainly concerned with nonlinear Schrodinger equation coupled with Bopp-Podolsky electromagnetic theory and Born-Infeld electromagnetic theory respectively, which are related to electrodynamics, superstrings, membranes and cosmology. Variational problems arise in these nonlinear science have become the hot topics in the study of nonlinear analysis. Under the variational structure, we wish to investigate the following problems via several methods in nonlinear analysis: the existence and multiplicity of sign-changing solutions for the Schrodinger-Bopp-Podolsky system, and the existene of ground state solutions for this system involves critical exponent; the existence, nonexistence and multiplicity of solutions for Schrodinger-Born-Infeld system. Moreover, we study the asymptotic behavior of these solutions. Because the coupled terms are nonhomogeneous, many standard variational methods and analysis techniques can't be applied directly. Moreover, it seems much complicated when people try to deal with the lack of (AR) condition for the nonlinearities. To attack these difficulties, we have to develop some new ideas and methods, and the development of theories and applications in nonlinear analysis can be promoted at the same time.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1080/00036811.2020.1859497
发表时间:2020-12
期刊: Appl. Anal.
影响因子:--
作者:Wentao Huang;Li Wang;Qingfang Wang
通讯作者:Qingfang Wang
国内基金
海外基金