课题基金基金详情
高透明性、超级绝热聚合物CO2发泡材料的制备机理与应用
结题报告
批准号:
51903046
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
叶长怀
依托单位:
学科分类:
E0303.高分子材料加工与成型
结题年份:
2022
批准年份:
2019
项目状态:
已结题
项目参与者:
--
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
发泡材料是一种良好的绝热材料,但是不透光的特性限制了它的很多应用。减小发泡材料的孔径至<40纳米或更小,有望赋予发泡材料透明和超绝热的特性,从而引发许多新的科学概念和实际应用。针对目前CO2发泡制备纳米发泡材料存在的一些瓶颈,如孔径不够小、孔隙率低、不透光、表面含致密层和过渡层、操作条件苛刻(超高压、低温)等,本申请提出一种解决这些问题的新思路,即通过调控聚合物的组成,调控发泡基体的玻璃化转变温度和CO2吸附能力,提出逐步升温多步发泡和在基体表面覆盖聚合物膜的方法,并结合原位小角X-ray散射研究CO2发泡过程孔结构的演变规律,有望创建一种在温和CO2吸附条件下制备高透明性(透光度>80%)、高孔隙率(>80%)、超绝热发泡材料的新技术,并揭示透明发泡材料的制备机理和孔径调控机制。该方法有望低操作成本制备高透明性、超绝热发泡材料,可应用于窗户玻璃的隔热材料等领域,具有巨大的的潜在商业价值。
英文摘要
Adding transparency function can significantly expand the applications of polymer foams in various areas, for example, as thermal insulating window films to save a substantial amount of building energy every year because the majority of energy loss in a building goes through windows. Fabrication of polymer foams using CO2 foaming is a low-cost and efficient way. However, it is a formidable challenge to develop highly transparent polymer foams as the pore size of the foams should be typically smaller than ~20 nm. There are several problems regarding nanofoams prepared by CO2 foaming, such as too large pore size, low porosity, low transparency or completely opaque, containing nonporous outer layer and transition layer, prepared under harsh operating conditions (extremely high pressure, low temperature for CO2 absorption) etc. To address these issues, new strategies are proposed: firstly, high Tg polynorbornene is selected as the matrix and the composition of the polynorbornene is tuned by copolymerization of varied amount of CO2-philic fluorinated norbornene monomers to increase the absorption of CO2 in the polymer matrix even under mild CO2 saturation conditions, resulting in great increase of the nucleation rate during foaming, which is beneficial for reducing the pore size (<20 nm) of the foams for highly transparent nanofoams. Secondly, a multi-step foaming method that foaming under gradually increased foaming temperature is proposed to increase the porosity of the nanofoams while inhibiting the severe coalescence of the bubbles during the bubble growth process. To prevent the polymer nanofoams from generating nonporous outer layer and transition layer, PDMS films are proposed to cover on the surface of the polymer matrix to prevent the CO2 from directly diffusing out to the air. Besides, the in-situ small angle X-ray scattering (SAXS) is proposed to characterize the pore structure evolution of the nanofoams for the whole foaming process and reveal the mechanism for fabricating nanofoams with ultra-small pore size. . These proposed strategies enable fabricating highly transparent and high porosity polymer nanofoam with super thermal insulating property under mild operating conditions and reveal the mechanism of fabricating nanofoams by CO2 foaming, which may significantly extend the applications of polymer foams in various areas.
聚合物发泡材料广泛应用于隔热保温领域,但是传统的CO2发泡材料泡孔大、不透光,限制了其在很多领域的应用。本项目围绕项目目标,以PMMA及其共聚物为研究对象,利用低温、高压CO2吸附的方法,增大CO2在聚合物基体中的溶解度,系统研究了聚合物玻璃化转变温度、CO2饱和吸附量、发泡温度等对发泡成核动力学及孔结构的影响规律,结合SEM和小角X-射线散射等手段揭示了发泡过程孔结构的演变规律。制备合成了兼具高玻璃化转变温度和高CO2亲和度的含氟聚酰亚胺聚合物基体,研究其CO2饱和吸附量及其发泡规律。关联了发泡温度对孔结构的相互关系,探索了逐步升温两步发泡和表面覆盖聚合物方法对含氟聚酰亚胺发泡材料孔隙率及孔径大小的影响,制备得到了孔隙率>50%且具有较高透明性的CO2发泡材料,揭示了超小孔隙率CO2发泡材料的制备机理。研究交联体系动态交联环氧树脂的CO2发泡行为,系统考察了聚合物基体交联程度、催化剂含量等对发泡材料孔结构的影响规律,制备得到孔隙率高达90%的发泡材料,并关联了孔隙率及孔径与发泡材料隔热性能的关系。基于此,进一步在动态交联体系中引入无机导电纳米粒子,研究纳米粒子含量对发泡材料电导率、发泡行为及孔结构的影响规律,深入揭示高孔隙率、小孔径发泡材料的制备机理。这些研究为开发新一代先进发泡材料提供了新思路,对推动新型发泡材料的发展和应用具有重要的指导作用和科学意义。
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1016/j.compositesb.2020.108497
发表时间:2021
期刊:Composites Part B-engineering
影响因子:13.1
作者:Shu Zhu;Qingya Zhou;Mengya Wang;Jackson Dale;Zhe Qiang;Yuchi Fan;Meifang Zhu;Changhuai Ye
通讯作者:Changhuai Ye
Multi-functional and highly conductive textiles with ultra-high durability through ‘green’ fabrication process
通过“绿色”制造工艺生产具有超高耐用性的多功能高导电纺织品
DOI:10.1016/j.cej.2020.127140
发表时间:2021-02
期刊:Chemical Engineering Journal
影响因子:15.1
作者:Shu Zhu;Mengya Wang;Zhe Qiang;Jianchun Song;Yue Wang;Yuchi Fan;Zhengwei You;Yaozu Liao;Meifang Zhu;Changhuai Ye
通讯作者:Changhuai Ye
Fire-retardant, self-extinguishing multiblock poly(esterimide)s/graphene composites with segregated structure for electromagnetic interference shielding
用于电磁干扰屏蔽的具有隔离结构的阻燃、自熄性多嵌段聚酯酰亚胺/石墨烯复合材料
DOI:10.1016/j.compositesa.2022.107262
发表时间:2022
期刊:Composites Part A: Applied Science and Manufacturing
影响因子:--
作者:Xiaowen Wang;Paul Smith;Zhe Qiang;Qingbao Guan;Zhengwei You;Changhuai Ye;Meifang Zhu
通讯作者:Meifang Zhu
DOI:10.3969/j.issn.1005-5770.2022.05.017
发表时间:2022
期刊:塑料工业
影响因子:--
作者:朋素平;王悦;朱姝;叶长怀
通讯作者:叶长怀
Biomass-Derived, Highly Conductive Aqueous Inks for Superior Electromagnetic Interference Shielding, Joule Heating, and Strain Sensing
生物质衍生的高导电水性墨水,具有卓越的电磁干扰屏蔽、焦耳加热和应变传感功能
DOI:10.1021/acsami.1c17170
发表时间:2021
期刊:ACS Applied Materials & Interfaces
影响因子:9.5
作者:Yue Wang;Suping Peng;Shu Zhu;Yuming Wang;Zhe Qiang;Changhuai Ye;Yaozu Liao;Meifang Zhu
通讯作者:Meifang Zhu
气凝胶纤维多尺度组装结构调控与增强增韧机制研究
  • 批准号:
    52373055
  • 项目类别:
    面上项目
  • 资助金额:
    50万元
  • 批准年份:
    2023
  • 负责人:
    叶长怀
  • 依托单位:
国内基金
海外基金