分布式阻塞流水车间调度超启发式算法研究

批准号:
62003203
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
邵仲世
依托单位:
学科分类:
系统工程理论与技术
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
邵仲世
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
随着经济全球化不断深入,制造业逐渐从集中式生产向分布式协作生产发展,多样化的生产环境给生产资源调度带来巨大挑战。本课题拟围绕多条异构柔性阻塞流水线和装配线,考虑不确定生产参数,结合经济、绿色等生产指标,以超启发式算法为基础,研究不确定环境下多目标异构分布式阻塞流水车间调度和装配调度优化问题。通过分析实际生产过程,提炼生产约束和生产目标,建立数学模型;从工件分配、工件排序、机器选择等子问题入手,挖掘问题特定知识,提出有效的构造型启发式算法和优化操作,构建低层领域知识规则库;以群智能优化为基础,实现多种群协同搜索的高层操作管理策略;建立低层与高层通信机制及操作序列的自适应学习机制,提出群智协同的学习型超启发式算法;结合计算机仿真开展模型及方法验证,并探讨其在实际生产中的应用。本课题研究成果可为解决实际生产中同类调度优化问题提供理论基础和关键技术支撑,进一步促进分布式生产调度理论和技术的发展。
英文摘要
With the deepening of economic globalization, the manufacturing industry is gradually developing from the centralized production to the distributed collaborative production, while the diversified production environment brings great challenges for the scheduling of production resource. Surrounding multiple heterogeneous flexible blocking flow lines, considering the uncertainty production parameters and combining the economic and green production target, based on the hyper-heuristic, this project intends to investigate the optimization problems of the multi-objective heterogeneous distributed blocking flow-shop scheduling and assembly scheduling under uncertain environment. Through the analysis of the practical production process, the production constraints and production objectives are extracted, and the mathematical models are established. From the sub problems such as the allocation of jobs, the sorting of jobs and the selection of machines, the problem-specific knowledge is mined. The effective constructive heuristics and optimization operators are proposed, and the low-level rule base with domain knowledge is constructed. Based on the swarm intelligence optimization, the multi-swarm collaboration search strategy is presented as the high-level operation management strategy. The communication mechanism between the low-level and the high-level along with the self-adaptive learning mechanism of the operator sequence are constructed. The learning hyper-heuristics with swarm intelligence collaboration are proposed. The validation of models and methods are conducted by combining the computer simulation, while their application in practical production is discussed. The achievements of this project can provide the theoretical foundation and the support of key technologies for solving the similar scheduling problems in practical production, and further facilitate the development of theory and technology for the distributed production scheduling.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:https://doi.org/10.1016/j.engappai.2023.107818
发表时间:2024
期刊:Engineering Applications of Artificial Intelligence
影响因子:--
作者:Zhongshi Shao;Weishi Shao;Jianrui Chen;Dechang Pi
通讯作者:Dechang Pi
Multi-objective evolutionary algorithm based on multiple neighborhoods local search for multi-objective distributed hybrid flow shop scheduling problem
基于多邻域局部搜索的多目标进化算法求解多目标分布式混合流水车间调度问题
DOI:10.1016/j.eswa.2021.115453
发表时间:2021-11
期刊:Expert Systems with Applications
影响因子:8.5
作者:Shao Weishi;Shao Zhongshi;Pi Dechang
通讯作者:Pi Dechang
An Ant Colony Optimization Behavior-Based MOEA/D for Distributed Heterogeneous Hybrid Flow Shop Scheduling Problem Under Nonidentical Time-of-Use Electricity Tariffs
不同分时电价下分布式异构混合流水车间调度问题的基于蚁群优化行为的MOEA/D
DOI:10.1109/tase.2021.3119353
发表时间:2021-10
期刊:IEEE Transactions on Automation Science and Engineering
影响因子:5.6
作者:Shao Weishi;Shao Zhongshi;Pi Dechang
通讯作者:Pi Dechang
Effective constructive heuristic and iterated greedy algorithm for distributed mixed blocking permutation flow-shop scheduling problem
分布式混合阻塞排列流水车间调度问题的有效构造启发式迭代贪心算法
DOI:10.1016/j.knosys.2021.106959
发表时间:2021-03
期刊:Knowledge-Based Systems
影响因子:8.8
作者:Shao Zhongshi;Shao Weishi;Pi Dechang
通讯作者:Pi Dechang
DOI:10.1007/s00521-022-07714-3
发表时间:2022-08
期刊:Neural Computing and Applications
影响因子:6
作者:W. Shao;Zhongshi Shao;D. Pi
通讯作者:W. Shao;Zhongshi Shao;D. Pi
国内基金
海外基金
