低温等离子体耦合微纳米气泡降解水中多氟及全氟化合物的研究
批准号:
51979039
项目类别:
面上项目
资助金额:
61.0 万元
负责人:
刘亚男
依托单位:
学科分类:
环境污染治理与修复
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
刘亚男
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
多氟及全氟化合物(PFASs)由于具有特殊的化学和生物稳定性而被广泛应用于国民生产的各个领域,但正是由于PFASs的高稳定性使其难以被普通的化学及生物法降解。而低温等离子体技术(NTP)能够在不投加任何化学药剂的情况下实现PFASs的有效去除,其原因在于NTP能够通过空气放电产生包括还原性高能电子在内的各种活性基团和物理形式的能量,进而实现C-F键及C-C键的断裂。本项目将微纳米气泡与NTP技术耦合起来,通过在微纳米气泡内部放电产生低温等离子体,结合具有两亲性质的PFASs富集于微纳米气泡表面及其难降解疏水端伸入微纳米气泡内部的现象,利用微纳米气泡比表面积大、液下溃灭产生高温、高压的特性实现PFASs的高效降解。本项目将以典型PFASs为处理对象,明确该技术对PFASs的去除机制并探明低温等离子体在微纳米尺度空间的发生情况及机理。本项目的成功实施将为水环境中PFASs的处理提供新思路。
英文摘要
Poly- and perfluoroalkyl substances (PFASs), due to their special chemical and biological stability, have been in widespread use in multiple applications. However, it is because of the high stability of PFASs that they are very difficult to be degraded by common chemical and biological methods. Non-thermal plasma (NTP) can effectively remove PFASs without adding any chemicals. The reason is that NTP can generate various active species through air discharge, including reducing high-energy electrons and various physical-form energy, in turn, the C-F and C-C bond cleavage will occur. This project combines micro-nano bubble technology (FB) with NTP technology to generate low-temperature plasma by discharging in FB in water, utilizing the characteristics of FB with large specific surface area, shrinking under liquid, instantly generating local high temperature and high pressure to increases the removal efficiency of PFASs which have amphiphilic properties and enriched at the gas-liquid interface. This project will treat typical PFASs, and clarify the removal mechanism of the target pollutants and determine the occurrence of plasma in the micro-nano scale space and the FB characteristics sustaining PFASs outside and plasma inside. The successful implementation of this project will provide new ideas for the treatment of PFASs from water environment.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
Efficient degradation of tetracycline by RGO@black titanium dioxide nanofluid via enhanced catalysis and photothermal conversion.
RGO@黑色二氧化钛纳米流体通过增强催化和光热转化有效降解四环素。
DOI:10.1016/j.scitotenv.2021.147536
发表时间:2021
期刊:Science of the Total Environment
影响因子:9.8
作者:Dahai Zhu;L. Cai;Zhuyu Sun;Ai Zhang;P. Héroux;Hyunjung Kim;Wei Yu;Yanan Liu
通讯作者:Yanan Liu
DOI:10.1016/j.cej.2023.141406
发表时间:2023-02
期刊:Chemical Engineering Journal
影响因子:15.1
作者:Yinyin Zhang;Han Zhang;Ai Zhang;P. Héroux;Zhuyu Sun;Yanan Liu
通讯作者:Yinyin Zhang;Han Zhang;Ai Zhang;P. Héroux;Zhuyu Sun;Yanan Liu
DOI:10.1016/j.chemosphere.2022.134145
发表时间:2022-02
期刊:Chemosphere
影响因子:8.8
作者:Yanan Liu;S. Deng;Lulu Chen;Ai Zhang;S. Suttiruengwong;Zhuyu Sun
通讯作者:Yanan Liu;S. Deng;Lulu Chen;Ai Zhang;S. Suttiruengwong;Zhuyu Sun
DOI:10.1016/j.jhazmat.2019.121688
发表时间:2019-11
期刊:Journal of hazardous materials
影响因子:13.6
作者:Jiaxun Zhan;Ai Zhang;P. Héroux;Ying Guo;Zhuyu Sun;Zhenyu Li;Jingyi Zhao;Yanan Liu
通讯作者:Jiaxun Zhan;Ai Zhang;P. Héroux;Ying Guo;Zhuyu Sun;Zhenyu Li;Jingyi Zhao;Yanan Liu
DOI:10.1021/acs.est.1c06342
发表时间:2021-12
期刊:Environmental science & technology
影响因子:11.4
作者:Dahai Zhu;Zhuyu Sun;Han Zhang;Ai Zhang;Yinyin Zhang;A. C. Miruka;Luxiang Zhu;Rui Li;Ying G
通讯作者:Dahai Zhu;Zhuyu Sun;Han Zhang;Ai Zhang;Yinyin Zhang;A. C. Miruka;Luxiang Zhu;Rui Li;Ying G
微气泡两相流高压脉冲等离子体(MTHP)深度处理印染废水研究
- 批准号:51578122
- 项目类别:面上项目
- 资助金额:63.0万元
- 批准年份:2015
- 负责人:刘亚男
- 依托单位:
降膜催化介质阻挡放电(FCDBD)等离子体去除ICM机制研究
- 批准号:51108070
- 项目类别:青年科学基金项目
- 资助金额:26.0万元
- 批准年份:2011
- 负责人:刘亚男
- 依托单位:
国内基金
海外基金















{{item.name}}会员


