课题基金基金详情
基于流固耦合数值计算和深度学习的冠状动脉病变“灰区”CT-FFR高精度计算方法研究
结题报告
批准号:
82001910
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
刘欣
依托单位:
学科分类:
医学图像数据处理、分析与可视化
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
刘欣
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
在临床实践中,“灰区”CT-FFR值诊断冠脉狭窄精度低大大限制了该技术日常临床实践中的应用。现有CT-FFR技术缺少联合斑块负荷评估冠脉功能性狭窄的的机制,这为提高CT-FFR测算准确性提出了很大的挑战。如何解决冠脉病变的解剖学信息和CT-FFR耦合问题,利用深度学习构建高效的CT-FFR测算神经网络模型是本项目需要解决的关键问题。本项目通过CTA影像数据准确重构冠脉和斑块解剖结构,利用流固耦合数值计算方法研究影像学特征与斑块解剖结构力学的映射关系,实现联合斑块负荷预测冠脉CT-FFR的方法。本项目创新性地结合流固耦合构建“灰区”冠脉病变的CT-FFR测算方法,并结合多任务物理学特征驱动深度学习方法实现高效率的CT-FFR计算。本项目提出的斑块解剖结构力学估算模型,完善了量化分析斑块解剖结构力学与冠脉血流动力学关联性的机制,有望成为改善动脉功能性狭窄诊断精度的关键技术支持。
英文摘要
Clinical practices had illustrated a low diagnostic accuracy in coronary artery disease with a “grey zone” CT-FFR. The drawback of CT-FFR without incorporation with plaque burden for assessing functional stenosis had posed a significant challenge to improve the diagnostic performance of CT-FFR. To develop a mechanism for introducing plaque characteristics into CT-FFR calculation is a key issue in this field. In addition, high performance deep learning framework is another key issue to obtain the efficiency of CT-FFR for daily clinical usage. We proposed a method of 3D reconstruction to obtain a geometry in combination with coronary artery lumen and plaque. The relationship between image and plaque characteristics was analyzed by using fluid-structure intervention simulation, which connects the plaque burden and CT-FFR. This project innovatively develops a protocol of using fluid-structure interaction analysis to improve the performance of CT-FFR. Also, a framework of multiple tasks physics-informed deep learning framework would be developed for more efficient calculation of CT-FFR. In this project, the structural force evaluation model of plaque burden had bridged the gap between plaque burden and hemodynamics, which could be a supportive technique to improve the functional assessment of artery stenosis.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1152/ajpheart.00416.2020
发表时间:2021-08-01
期刊:AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY
影响因子:4.8
作者:Liu,Xin;Fan,Yiting;Lee,Alex Pui-Wai
通讯作者:Lee,Alex Pui-Wai
个性化肺动脉狭窄血流动力学智能快速定量分析研究
  • 批准号:
    --
  • 项目类别:
    省市级项目
  • 资助金额:
    10.0万元
  • 批准年份:
    2019
  • 负责人:
    刘欣
  • 依托单位:
国内基金
海外基金