“代谢转换障碍/铁死亡”限制脊髓星形胶质细胞体内重编程的作用及机制研究

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    81902283
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    21.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    H2001.康复治疗与康复机制
  • 结题年份:
    2022
  • 批准年份:
    2019
  • 项目状态:
    已结题
  • 起止时间:
    2020-01-01 至2022-12-31

项目摘要

Difficult to treat and bad prognosis of spinal cord injury (SCI) make it a heavy burden for society. In the manner of generating scar-forming cells to neurons in vivo, reprogramming of astrocytes is promising to treat SCI, with the ability to alleviate the inhibition of scar on nerve regeneration and increase the neurons bridging the circuits. Nevertheless, the inefficiency of reprogramming has restricted its utilization. Our team believe that the main reason for inefficiency is “Uncoordinated Metabolic Transition/Ferroptosis”, with in vivo tests of brain astrocytes reprogramming supporting us. As there exist regional heterogeneity and transcription difference between spine and brain, it’s necessary to verify its feasibility for SCI treatment. Our previously findings showed that uncoordinated metabolic transition and ferroptosis exist in the in vivo reprogramming process of spinal astrocytes, meanwhile, antioxidant therapy significantly elevating the efficiency of reprogramming. Our works preliminarily revealed that uncoordinated metabolic transition/ferroptosis play a vital role in inhibiting astrocytes reprogramming, as lipid peroxidation is the characteristic of ferroptosis. Our task is to clarify the effect and mechanism of uncoordinated metabolic transition in reprogramming while considering uncoordinated metabolic transition and ferroptosis as inhibitory checkpoints, and those of lipid peroxidation to activate ferroptosis in inhibiting reprogramming. With these problems having been clarified, we can update the molecular mechanism of reprogramming, and offer a new therapeutic strategy for SCI.
脊髓损伤(SCI)治疗难、效果差,给社会带来沉重负担。星形胶质细胞体内重编程是SCI有希望的治疗方法,利用体内瘢痕形成细胞来再生新神经元,既减轻瘢痕对神经再生的抑制,又增加神经元来桥接回路,但目前重编程效率低。课题组认为:重编程过程中代谢转换障碍/铁死亡是效率低下的主要原因。脑星形胶质细胞体内重编程的研究支持这一观点,但由于区域异质性且脊髓重编程转录子为SOX2与脑不同,有必要验证是否适用于SCI。课题组前期发现:脊髓星形胶质细胞体内重编程存在代谢转换障碍,脂质过氧化,同时抗氧化治疗能显著提高效率。而脂质过氧化是铁死亡的特征,初步揭示代谢转换障碍/铁死亡的关键作用。下一步本课题拟:以代谢转换障碍和铁死亡为抑制性检查点,阐明重编程过程中代谢转换障碍的作用和机制;明确代谢转换障碍通过脂质过氧化进一步激活铁死亡限制重编程的作用及机制。阐明这些问题,将丰富重编程的分子机制,为SCI治疗提供新策略。

结项摘要

脊髓损伤(SCI)是一种致残率高、预后极差的中枢神经系统创伤性疾病。创伤后大量的神经元细胞丢失和致密神经胶质瘢痕的形成是影响SCI修复和神经再生的主要原因。星形胶质细胞体内重编程是目前SCI修复治疗方法中十分具有前景的治疗方式,但目前重编程效率低不足以满足脊髓功能恢复的要求。基于“体内重编程过程中代谢转换障碍/ 铁死亡是脊髓星形胶质细胞细胞体内重编程效率低下的主要原因”的研究假设,本研究建立小鼠脊髓损伤模型,采用慢病毒载体将Sox 2基因导入到脊髓星形胶质细胞中,诱导星形胶质细胞体内重编程。研究发现,在体内重编程过程中,细胞氧化应激水平以及脂质过氧化显著提高,给予抗氧化剂处理可有效地提高重编程效率;用透射电子显微镜可在脊髓星形胶质细胞体内重编程过程中观察到线粒体出现铁死亡特征性改变。进一步研究发现,体内重编程中铁死亡的相关指标均发生了显著变化,并且抑制铁死亡可以改善重编程细胞存活率,提高重编程效率,提示铁死亡可能是体内重编程细胞主要死亡模式。并且抗氧化剂和铁死亡抑制剂均可以有效地降低神经胶质瘢痕的密度以促进神经轴突再生。本研究对铁死亡抑制脊髓星形胶质细胞体内重编程效率机制的研究对该技术临床应用于SCI治疗具有指导意义。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
USF1-mediated upregulation of lncRNA GAS6-AS2 facilitates osteosarcoma progression through miR-934/BCAT1 axis
USF1介导的lncRNA GAS6-AS2上调通过miR-934/BCAT1轴促进骨肉瘤进展
  • DOI:
    10.18632/aging.103015
  • 发表时间:
    2020-04-15
  • 期刊:
    AGING-US
  • 影响因子:
    5.2
  • 作者:
    Wei, Guojun;Zhang, Tianwei;Ji, Guangrong
  • 通讯作者:
    Ji, Guangrong
Mogrol Attenuates Osteoclast Formation and Bone Resorption by Inhibiting the TRAF6/MAPK/NF-κB Signaling Pathway In vitro and Protects Against Osteoporosis in Postmenopausal Mice.
Mogrol 在体外通过抑制 TRAF6/MAPK/NF-κB 信号通路来减弱破骨细胞形成和骨吸收,并预防绝经后小鼠骨质疏松症
  • DOI:
    10.3389/fphar.2022.803880
  • 发表时间:
    2022
  • 期刊:
    FRONTIERS IN PHARMACOLOGY
  • 影响因子:
    5.6
  • 作者:
    Chen, Yongjie;Zhang, Linlin;Li, Zongguang;Wu, Zuoxing;Lin, Xixi;Li, Na;Shen, Rong;Wei, Guojun;Yu, Naichun;Gong, Fengqing;Rui, Gang;Xu, Ren;Ji, Guangrong
  • 通讯作者:
    Ji, Guangrong

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

危国军的其他基金

生物发光驱动的光遗传学刺激介导AMPAR依赖的神经重塑促进脊髓损伤后运动功能恢复的机制研究
  • 批准号:
    82272615
  • 批准年份:
    2022
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码