课题基金基金详情
基于犯罪者日常活动的侵财犯罪时空格局分析、预测与警务防控实验
结题报告
批准号:
42001171
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
肖露子
依托单位:
学科分类:
人文地理
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
肖露子
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
犯罪者、潜在受害者和监管者的活动分布对侵财犯罪时空格局有重要的影响,但已有的研究主要关注潜在受害者和监管者,对犯罪者日常活动的探讨仍较缺乏。本项目以广州市为研究区域,以犯罪者日常活动为主线,开展侵财犯罪时空格局分析、预测与警务防控实验研究。首先基于犯罪者ID,融合犯罪者抓获数据、摄像头数据、盘查数据及问卷调查数据,识别犯罪者日常活动节点及路径,挖掘其犯罪日常活动和不同类型非犯罪日常活动的规律;研究犯罪者“居住地-不同类型活动地-作案地”的关系,探讨其对犯罪时空格局的影响;利用长短时记忆法和时间卷积网络等时序机器学习技术建立基于犯罪者活动与犯罪时空格局关系的预测模型;制定警务防控措施,开展警务实验对其进行完善,从而丰富犯罪地理理论,提升和完善犯罪预测参数体系与方法,并使研究成果落地。申请人长期从事犯罪地理研究,所在团队与广州市公安局合作紧密,积累了大量本项目所需的数据,保障了项目的顺利开展。
英文摘要
The distribution of offenders, potential victims and guardians are important factors that affect the spatio-temporal pattern of property crimes. There is much literature on potential victims and guardians, while little research on the routine activities of offenders. Taking Guangzhou as the research area, this project takes the routine activities of offenders as the main line to carry out the spatio-temporal pattern analysis, prediction and police prevention experiments research on property crimes. Firstly, based on the offenders’ ID, the capture data, camera identification data, patrol data and questionnaire of the offenders are integrated to identify their routine activity nodes and paths, and then to mine the patterns of their crime-oriented activities and different types of non-crime-oriented routine activities. Secondly, The relationship among "residence - different activity places - crime place" and its influence on the spatio-temporal pattern of crimes will be examined. Thirdly, machine learning technologies (long short term memory network and temporal convolutional network) are used to establish prediction models based on the spatio-temporal pattern relationship between offenders’ activities and crime. Fourthly, crime prevention measures will be formulated, and police experiments will be carried out. This project aims to enrich the theory of crime geography, perfect the parameters and methods of crime prediction, and make the research effectively applied to daily police work. The applicant has been engaged in the study of crime geography for a long time. The team she belongs to has cooperated closely with Guangzhou Municipal Public Security Bureau, which has accumulated rich data needed for the project, thus providing a guarantee for the implement of the project.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.3390/ijgi13010008
发表时间:2023-12
期刊:ISPRS Int. J. Geo Inf.
影响因子:--
作者:Lin Liu;Chenchen Li;Luzi Xiao;Guangwen Song
通讯作者:Lin Liu;Chenchen Li;Luzi Xiao;Guangwen Song
DOI:10.1016/j.cities.2023.104331
发表时间:2023-06
期刊:Cities
影响因子:6.7
作者:Guangwen Song;Liang Cai;Lin Liu;Luzi Xiao;Yuhan Wu;Han Yue
通讯作者:Guangwen Song;Liang Cai;Lin Liu;Luzi Xiao;Yuhan Wu;Han Yue
Interpretable machine learning models for crime prediction
用于犯罪预测的可解释机器学习模型
DOI:10.1016/j.compenvurbsys.2022.101789
发表时间:2022-06
期刊:Computers, Environment and Urban Systems
影响因子:--
作者:Xu Zhang;Lin Liu;Minxuan Lan;Guangwen Song;Luzi Xiao;Jianguo Chen
通讯作者:Jianguo Chen
DOI:10.3390/ijgi11030201
发表时间:2022
期刊:ISPRS International Journal of Geo-Information
影响因子:3.4
作者:Chunxia Zhang;Lin Liu;Suhong Zhou;Jiaxin Feng;Jianguo Chen;Luzi Xiao
通讯作者:Luzi Xiao
DOI:10.1016/j.habitatint.2021.102435
发表时间:2021
期刊:Habitat International
影响因子:6.8
作者:Xu Chong;Xiao Luzi;Song Guangwen;Pan Bingpeng;Liu Huazhen
通讯作者:Liu Huazhen
国内基金
海外基金