课题基金基金详情
等离激元金属/半导体复合光催化分解水体系的界面调控
结题报告
批准号:
22002163
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
王升扬
学科分类:
催化化学
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
王升扬
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
等离激元金属/半导体光催化由于等离激元金属优异的太阳能吸收特性已经成为太阳能制氢领域的重要新兴方向。虽已取得了一些重要进展,但是其最终的太阳能到氢能的转化效率仍然很低。主要挑战有:等离激元激发产生的电荷寿命极短,电子注入效率低;电荷复合效率高,电荷分离效率低;表面催化反应速率缓慢;根据前期的结果发现等离激元光催化的基本过程均涉及界面问题,因此本项目计划以等离激元金纳米粒子/半导体为模型体系,聚焦光催化体系的界面问题,通过发展界面缺陷调控、界面助催化剂修饰等理性调控策略,考察界面结构变化对光催化分解水产氢、产氧的影响;然后结合时间、空间分辨等光谱技术定量化研究界面结构-性能关系,从而阐明界面结构在光催化过程中的微观机制。本项目研究将加深对光催化分解水基本过程的认识和理解,并为指导开发高效光催化制氢体系提供理论基础和实验依据。目前,初步的研究结果证明了该项目的可行性。
英文摘要
Plasmonic metal/semiconductor photocatalysis has become an important new direction in the field of solar energy hydrogen production due to its excellent solar absorption property. Although some important advances have been made, the resulting solar to hydrogen conversion efficiency is still very low. The main challenges are as follows: the lifetime of plasmon-generated electron-hole pairs is very short and the electron injection efficiency is low; the charge recombination efficiency is high and therefore the charge separation efficiency is poor. the surface catalytic reaction rate is sluggish. According to previous research, it is found that the interface issues are involved in nearly all the photocatalytic processes. For this reason, in this project, we plan to focus on the interface issues of the plasmonic photocatalysis based on gold nanoparticle/semiconductor photocatalyst as the model system. By developing rational regulation strategies such as interfacial defect regulation and interfacial co-catalyst modification, we could investigate the relationship between the interfacial structure and the performance of photocatalytic hydrogen and oxygen production. Furthermore, the critical role of interfacial structure on photocatalytic performance is quantitatively studied by combining time and space resolution spectral techniques, so as to elucidate the microscopic mechanism of interfacial structure in the photocatalytic process. The implementation of this project will deepen the understanding of the basic process of photocatalytic water splitting and provide a theoretical and experimental basis for guiding the development of high-efficiency photocatalytic hydrogen production system. At present, the preliminary research results prove the feasibility of the project.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
Boosting photocatalytic water oxidation by surface plasmon resonance of AgxAu1-x alloy nanoparticles
Ag(x)Au1-x 合金纳米颗粒的表面等离子体共振促进光催化水氧化
DOI:10.1016/j.nanoen.2021.106189
发表时间:2021-05-25
期刊:NANO ENERGY
影响因子:17.6
作者:Haider, Rida Shahzadi;Wang, Shengyang;Li, Can
通讯作者:Li, Can
DOI:10.1021/acs.jpcc.2c00206
发表时间:2022-03
期刊:The Journal of Physical Chemistry C
影响因子:--
作者:Bin Zeng;Shengyang Wang;Yejun Xiao;Guang Zeng;Xianwen Zhang;Rengui Li;Can Li
通讯作者:Bin Zeng;Shengyang Wang;Yejun Xiao;Guang Zeng;Xianwen Zhang;Rengui Li;Can Li
DOI:10.1016/j.xcrp.2023.101386
发表时间:2023-04
期刊:Cell Reports Physical Science
影响因子:8.9
作者:Hao Li;Shengyang Wang;Jianbo Tang;Huichen Xie;Jiangping Ma;H. Chi;Canbing Li
通讯作者:Hao Li;Shengyang Wang;Jianbo Tang;Huichen Xie;Jiangping Ma;H. Chi;Canbing Li
DOI:10.1016/j.nanoen.2021.106638
发表时间:2021-10
期刊:Nano Energy
影响因子:17.6
作者:Bin Zeng;Shengyang Wang;Zhendong Feng;Yejun Xiao;Mingrun Li;Feng Hong;Yue Zhao;Zhaochi Feng;Rengui Li;Can Li
通讯作者:Bin Zeng;Shengyang Wang;Zhendong Feng;Yejun Xiao;Mingrun Li;Feng Hong;Yue Zhao;Zhaochi Feng;Rengui Li;Can Li
DOI:10.1002/cptc.202300049
发表时间:2023
期刊:ChemPhotoChem
影响因子:3.7
作者:Hao Li;Shengyang Wang;Haibo Chi;Can Li
通讯作者:Can Li
国内基金
海外基金