基于深度关系网络的代数机器解答研究
结题报告
批准号:
61977029
项目类别:
面上项目
资助金额:
50.0 万元
负责人:
余新国
依托单位:
学科分类:
教育信息科学与技术
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
余新国
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
代数机器解答是智能教育领域中的核心技术。本项目针对代数机器解答研究中的主要难点问题提出创新解决方法,即研究提升题目理解能力的新方法,增强自动求解能力的新方法,以及集成题目理解和自动求解的新方法提升代数机器解答算法性能的方法。为此,本项目拟从四个方面展开研究:第一,针对申请人在预研中建立的模型池缺乏泛化能力的不足,建立更好地体现数学含义的词语分类体系,在此基础上构建泛化能力更强的模型池;第二,针对没有优选直陈数学关系方法的不足,研究既抽取又优选直陈数学关系的方法,进而研究构建嵌入模型池的深度关系网络提升该方法的能力的方法;第三,针对发现隐含数学关系能力不强的不足,研究结合隐含数学关系库构建深度关系网络提升发现隐含数学关系能力的方法;第四,集成用深度关系网络获取直陈和隐含数学关系和增强自动求解能力等新方法,构建高性能代数机器解答新算法。这些研究具有重要的学术价值,同时也具有十分广泛的应用前景。
英文摘要
Algorithms for solving algebraic problems are the crucial technology in developing educational intelligent systems. This proposal suggests a batch of new methods against the issues in developing algorithms for solving algebraic problems, including the methods to enhance the performance of understanding problem and the performance of solving the group of acquired math relations, and the method for fusing the proposed new methods to establish high performance algorithms for solving algebraic problems. Hence, this project aims to establish new theories and methods for improving the performance of solving algebraic problems in the following four aspects. (1) Since the set of syntax-semantic models established while preparing this project lacks generalization ability, this proposing project builds a new parts-of-speech classification system for natural languages and establishes a new set of syntax-semantic models leveraged on the system for a natural language. (2) Since no method chooses the qualified group from the extracted stated math relations, it proposes an extracting-and-choosing method that extracts stated math relations by using all possible models and then that chooses a qualified group from the extracted relations. Further, it designs a deep relational network for lifting the performance of the extracting-and-choosing method. (3) To improve the ability to discover hidden math relations, this proposing project suggests of designing a deep relational network for discovering hidden relations by adopting the techniques of encoding, decoding, deep matching network, and knowledge database. (4) This project also proposes an improved algorithm for solving algebraic problems by integrating the new methods for understanding problems and the enforced methods for solving groups of math relations. The methods that enforces the method for solving groups of math relations include the method for adding auxiliary lines and the method for transforming algebraic solution into arithmetic solution. Therefore, the proposed methods and algorithms developed in this project have their high value for both the academia and the industry as well as a great potential for application.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:https://doi.org/10.1016/j.jksuci.2022.08.023
发表时间:2022
期刊:Journal of King Saud University-Computer and Information Sciences
影响因子:6.9
作者:Xinguo Yu;Huihui Sun;Chao Sun
通讯作者:Chao Sun
DOI:--
发表时间:2023
期刊:Computers Materials & Continua
影响因子:--
作者:Hao Meng;Xinguo Yu;Bin He;Litian Huang;Liang Xue;Zongyou Qiu
通讯作者:Zongyou Qiu
DOI:10.1007/s10489-020-01667-7
发表时间:2020-03
期刊:Applied Intelligence
影响因子:5.3
作者:Bin He;Xinguo Yu;Pengpeng Jian;Ting Zhang
通讯作者:Bin He;Xinguo Yu;Pengpeng Jian;Ting Zhang
DOI:10.3390/su15107817
发表时间:2023-05-10
期刊:SUSTAINABILITY
影响因子:3.9
作者:Aguilar-Cruz,Paola Julie;Wang,Peiyu;Luo,Heng
通讯作者:Luo,Heng
DOI:10.1016/j.jksuci.2023.101673
发表时间:2023-07
期刊:J. King Saud Univ. Comput. Inf. Sci.
影响因子:--
作者:Xiaopan Lyu;Xinguo Yu;Rao Peng
通讯作者:Xiaopan Lyu;Xinguo Yu;Rao Peng
人机智能协同指导研究生算法创新的方法研究
  • 批准号:
    62277022
  • 项目类别:
    面上项目
  • 资助金额:
    57万元
  • 批准年份:
    2022
  • 负责人:
    余新国
  • 依托单位:
基于多层潜式条件随机场的视频情感事件检测研究
  • 批准号:
    61272206
  • 项目类别:
    面上项目
  • 资助金额:
    81.0万元
  • 批准年份:
    2012
  • 负责人:
    余新国
  • 依托单位:
国内基金
海外基金