基于自动化搜索与机器学习的分组密码算法分析
结题报告
批准号:
62002201
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
孙玲
依托单位:
学科分类:
信息安全
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
孙玲
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
分组密码算法作为对称密码算法的一个重要分支,在计算机通信和信息系统安全领域具有广泛应用。虽然经过近三十年的发展,分组密码分析理论已渐趋成熟,但仍存在一些未解决的问题:一方面,密码研究人员一直朝着“构建不依赖理想假设的新模型,从而完全彻底地掌握算法安全性”的终极目标不断努力,但差距仍存;另一方面,人工智能在各行各业对传统计算方式的冲击使得我们开始思考,其中算法能否为密码分析带来突破性进展。本项目围绕上述问题开展研究。首先,将密钥生成方案纳入模型构建过程,构造在轮密钥相关条件下仍然适用的线性壳相关度分布评估模型,更新已有的线性和差分线性分析理论框架。其次,探索轻量级分组密码算法在人工智能时代下的安全性,使用机器学习算法挖掘潜在的非随机统计特征,构建新型分析模型。最后,将数学问题求解器与深度学习相结合,开发功能更强的分组密码算法自动化分析工具,在大分组、长轮数搜索任务中取得显著成效。
英文摘要
As a crucial branch of symmetric-key ciphers, the block cipher has extensive use in the field of intercomputer communication and information system security. Although the past three decades witnessed that the cryptanalyses of block ciphers have come of age, there remain some unsolved issues. On the one hand, the ultimate goal in cryptanalysis is to construct new models which are independent of ideal assumptions and get a thorough understanding regarding the security of the cipher. Even though the researchers keep striving towards this goal, the gap is still striking. On the other hand, given the impact of artificial intelligence (AI) on traditional calculation methods in almost all walks of life, we start to consider if the algorithms in AI can bring about a breakthrough in cryptanalysis. This project will carry out researches centred on these problems. Firstly, based on our previous work, we will integrate the key-schedule into the constructing phase of the new model for the correlation distribution of linear hull. The new model is valid even when the round keys are dependent and will be utilised to update the current frameworks of linear and differential-linear cryptanalyses. Secondly, we will explore the security of lightweight block cipher in the era of AI. Novel cryptanalytic models will be constructed with the nonrandom statistical feature identified by machine learning algorithms. At last, we will combine mathematical solvers with deep learning methods to develop a more powerful automatic tool for block ciphers. The new tool will make remarkable progress in the searching tasks with large block sizes and a large number of rounds.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.46586/tosc.v2021.i1.269-315
发表时间:2021
期刊:IACR Cryptol. ePrint Arch.
影响因子:--
作者:Ling Sun;Wen Wang;Meiqin Wang
通讯作者:Ling Sun;Wen Wang;Meiqin Wang
DOI:10.46586/tosc.v2023.i1.111-151
发表时间:2023-03
期刊:IACR Trans. Symmetric Cryptol.
影响因子:--
作者:Ling Sun;Meiqin Wang
通讯作者:Ling Sun;Meiqin Wang
DOI:10.46586/tosc.v2022.i1.212-219
发表时间:2022
期刊:IACR Transactions on Symmetric Cryptology
影响因子:3.5
作者:Ling Sun;Wei Wang;Meiqin Wang
通讯作者:Meiqin Wang
DOI:--
发表时间:2021
期刊:IACR Transactions on Symmetric Cryptology
影响因子:3.5
作者:Ling Sun;Wei Wang;Meiqin Wang
通讯作者:Meiqin Wang
对称密码算法差分与线性分析新型理论体系中困难问题研究
  • 批准号:
    --
  • 项目类别:
    面上项目
  • 资助金额:
    55万元
  • 批准年份:
    2022
  • 负责人:
    孙玲
  • 依托单位:
国内基金
海外基金