CAD非线性方程组高效稳定的几何求解理论和方法研究
结题报告
批准号:
61972120
项目类别:
面上项目
资助金额:
59.0 万元
负责人:
陈小雕
依托单位:
学科分类:
计算机图形学与虚拟现实
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
陈小雕
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
方程组的求解问题在几何造型系统等有着广泛的应用。本项目以CAD中求交、干涉检测、最近距离计算、PDE造型等为例,研究非线性方程组的几何求解理论与方法。具体内容包括:(1)非线性函数新型包围盒的理论和方法研究,可望为任意非线性方程组提供稳定高效的几何裁剪方法及其较坚实的理论基础;(2)操作直观、局部控制性好、高收敛阶的PDE方程包围盒求解技术,使得带参数PDE方程结合深度学习的求解成为可能;(3)直接逼近曲面/曲面间交线高逼近阶的近似算法,可望显著减少待计算交点的数目并提升计算稳定性与效率;(4)非线性方程组高效稳定的几何迭代求解方法;(5)基于拓扑推理修正的求交算法,以提高拓扑成环正确性与系统稳定性。本项目若成功实施,可望为任意非线性方程组提供稳定高效的几何裁剪方法,显著提升CAD中求交、最近距离计算、偏微分方程求解、拓扑成环等问题的效率、精度和稳定性;同时可望更好地满足虚拟现实等应用。
英文摘要
Solving a system of non-linear equations has wide applications in computer graphics and geometric design. This project investigates geometric methods and relevant theories for solving a system of non-linear equations using typical examples in Computer Aided Design (CAD), such as curve/surface and surface/surface intersection, collision detection, minimum distance computation and the solution of Partial Differential Equations (PDE). Main issues to be addressed in the project include: (1) Bounding box theory and methods of non-linear functions, curves and surfaces, which is promising for developing efficient and robust geometric clipping methods for solving a system of non-linear equations; (2) Intuitive and locally controllable bounding box with high approximation order and with further integration of novel deep learning techniques for solving partial differential equations; (3) Efficient and stable algorithms for directly computing surface/surface intersections; (4) Fast, robust and iterative geometric methods for solving a system of nonlinear equations; (5) Intersection algorithms based on topology evolution for improving the reliability and robustness of the resulting solutions. Upon successful completion, it is expected to provide a set of robust and efficient geometric clipping methods for solving an arbitrary system of nonlinear equations, and to improve computational stability, efficiency and accuracy of algorithms for computating intersections, minimum distance and collision detection, and for solving partial differential equations. In addition, it is also expected to meet real-time computational requirements for virtual reality and other applications.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
New bounds of Wilker- and Huygens-type inequalities for inverse trigonometric functions
反三角函数的威尔克型和惠更斯型不等式的新界
DOI:10.1007/s13398-020-00969-2
发表时间:2021-01
期刊:Revista de la Real Academia de Ciencias Exactas, Fiacutesicas y Naturales. Serie A.
影响因子:--
作者:陈小雕;王辉;杨康;谢进
通讯作者:谢进
Image recoloring for Red-Green dichromats with compensation range-based naturalness preservation and refined dichromacy gamut
红绿二色镜的图像重新着色,具有基于补偿范围的自然度保留和精细的二色色域
DOI:10.1007/s00371-022-02549-4
发表时间:2022
期刊:The Visual Computer
影响因子:--
作者:Wangkang Huang;Zhenyang Zhu;Ligeng Chen;Kentaro Go;Xiaodiao Chen;Xiaoyang Mao
通讯作者:Xiaoyang Mao
DOI:DOI: 10.1109/TGRS.2023.3332257
发表时间:2023
期刊:IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
影响因子:8.2
作者:Xiaodiao Chen;Wen Wu;Wenya Yang;Hongshuai Qin;Xiaotao Wu;Xiaoyang Mao
通讯作者:Xiaoyang Mao
DOI:10.1016/j.knosys.2023.110614
发表时间:2023-05
期刊:Knowl. Based Syst.
影响因子:--
作者:Wen Wu;Xiao-Diao Chen;Wenyang Yang;J. Yong
通讯作者:Wen Wu;Xiao-Diao Chen;Wenyang Yang;J. Yong
DOI:10.1007/s00371-023-02990-z
发表时间:2023-07
期刊:Vis. Comput.
影响因子:--
作者:Xiao-Diao Chen;Rui He;Xiaoyang Mao
通讯作者:Xiao-Diao Chen;Rui He;Xiaoyang Mao
高效稳定的几何裁剪求根理论、方法与应用研究
  • 批准号:
    LY19F020041
  • 项目类别:
    省市级项目
  • 资助金额:
    0.0万元
  • 批准年份:
    2018
  • 负责人:
    陈小雕
  • 依托单位:
高效稳定的中轴计算理论与方法研究
  • 批准号:
    61672009
  • 项目类别:
    面上项目
  • 资助金额:
    50.0万元
  • 批准年份:
    2016
  • 负责人:
    陈小雕
  • 依托单位:
几何计算方法及其稳定性研究
  • 批准号:
    60803076
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    20.0万元
  • 批准年份:
    2008
  • 负责人:
    陈小雕
  • 依托单位:
国内基金
海外基金