高离子导率、高机械强度固态电解质薄膜结构及制备原理研究

批准号:
22005200
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
朱高龙
依托单位:
学科分类:
电能源化学
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
朱高龙
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
金属锂全固态电池因为其优异的安全性和潜在高的理论能量密度,被认为是最有希望的下一代储能装置。然而,低离子导率、低机械强度的厚固态电解质层严重限制了全固态电池的应用。降低固态电解质层厚度,实现电解质层薄膜化是提升全固态电池能量密度的有效策略,但实现电解质层薄膜化的同时,提升其机械强度与离子导率仍面临挑战,对高机械强度、高离子导率固态电解质薄膜的结构及其制备原尚理缺乏认识。. 本项目拟通过材料的结构设计、粘结剂的功能化修饰、策略性复配、浆料涂布制备硫化物固态电解质薄膜,同时结合高精度的飞行时间二次离子质谱、理论模拟、原位光学观测、原位阻抗等表征手段,探索高机械强度、高离子导率固态电解质薄膜的结构及其制备原理。从而指导金属锂全固态电池的设计,为获得高安全、长寿命及高能量密度的金属锂全固态电池奠定基础。
英文摘要
Lithium metal all-solid-state battery is considered as the most promising next generation energy storage device due to its excellent safety and potential high theoretical energy density. However, the application of all solid-state batteries is seriously limited by the thick solid-state electrolyte layer with low ionic conductivity and low mechanical strength. Reducing the thickness of solid electrolyte layer, realize the thin-film of solid electrolyte is an effective strategy to improve the energy density of all-solid-state battery. However, how to obtain solid electrolyte membranes while improving its mechanical strength and ionic conductivity is facing challenges. The understanding on the structure and preparation principle of solid electrolyte film with high mechanical strength and ionic conductivity still unclear.. In this project, the sulfide solid electrolyte membranes will be obtained through the structural design of materials, functional modification of binders, strategic compounding and slurry casting. At the same time, the structure design and preparation mechanism of high mechanical strength and high ionic conductivity solid electrolyte membrane will be employed by combining high-precision time-of-flight secondary ion mass spectrometry, theoretical simulation, in-situ optical observation, in-situ impedance and other characterization means. Thus, give a guidance to design all-solid-state battery and lay a foundation for obtaining lithium metal all-solid-state battery with high safety, long life, and high energy density.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1016/j.nanoen.2023.109215
发表时间:2023-12
期刊:Nano Energy
影响因子:17.6
作者:Saiyue Liu;Xiang Liu;Dongsheng Ren;Tianyi Li;Liang Yi;Wei Liu;Juping Xu;Tiening Tan;Jiahao Zhang;Yukun Hou;Yi Guo;Gaolong Zhu;Shuo Yin;Guohe Yuan;Yi Weng;Guohua Ma;Zuling Peng;Xiang Zheng;Wen Yin;Languang Lu;Minggao Ouyang
通讯作者:Saiyue Liu;Xiang Liu;Dongsheng Ren;Tianyi Li;Liang Yi;Wei Liu;Juping Xu;Tiening Tan;Jiahao Zhang;Yukun Hou;Yi Guo;Gaolong Zhu;Shuo Yin;Guohe Yuan;Yi Weng;Guohua Ma;Zuling Peng;Xiang Zheng;Wen Yin;Languang Lu;Minggao Ouyang
DOI:10.1016/j.etran.2023.100272
发表时间:2023-08
期刊:eTransportation
影响因子:11.9
作者:Dongsheng Ren;Languang Lu;Rui Hua;Gaolong Zhu;Xiang Liu;Yuqiong Mao;Xinyu Rui;Shan-lin Wang
通讯作者:Dongsheng Ren;Languang Lu;Rui Hua;Gaolong Zhu;Xiang Liu;Yuqiong Mao;Xinyu Rui;Shan-lin Wang
A Self-Limited Free-Standing Sulfide Electrolyte Thin Film for All-Solid-State Lithium Metal Batteries
用于全固态锂金属电池的自限独立硫化物电解质薄膜
DOI:10.1002/adfm.202101985
发表时间:2021
期刊:Advanced Functional Materials
影响因子:19
作者:Zhu Gao-Long;Zhao Chen-Zi;Peng Hong-Jie;Yuan Hong;Hu Jiang-Kui;Nan Hao-Xiong;Lu Yang;Liu Xin-Yan;Huang Jia-Qi;He Chuanxin;Zhang Jian;Zhang Qiang
通讯作者:Zhang Qiang
DOI:--
发表时间:2023
期刊:Energy & Environmental Science
影响因子:32.5
作者:Dongsheng Ren;Gaolong Zhu
通讯作者:Gaolong Zhu
国内基金
海外基金
