课题基金基金详情
广义相交矩阵李代数及其相关的Kac-Moody代数研究
结题报告
批准号:
11626189
项目类别:
数学天元基金项目
资助金额:
3.0 万元
负责人:
吕瑞
依托单位:
学科分类:
A0105.李理论及其推广
结题年份:
2017
批准年份:
2016
项目状态:
已结题
项目参与者:
--
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
广义相交矩阵李代数, 简称GIM李代数, 是李理论中的一类重要李代数, 与奇异理论、表示论和Kac-Moody代数理论有密切联系。我们主要研究一类GIM李代数及其量子代数, 其结构矩阵是P. Slodowy意义下的广义相交矩阵, 由ADE型Cartan矩阵A的二重仿射化给出。由于该类广义相交矩阵的覆盖矩阵是不定型的广义Cartan 矩阵,使得它所对应的广义相交矩阵可以实现为它的覆盖矩阵给出的Kac-Moody代数的对合子代数;而且,与该对合映射密切相关的另一个对合映射的不动点子代数也是一个不定型的Kac-Moody 代数,所以研究该类广义相交矩阵李代数及其量子代数是对不定型Kac-Moody代数的研究的重要补充。我们将研究这类GIM李代数的结构理论,包括它的根系结构,虚根的性质,Braid变换下广义相交矩阵及其覆盖矩阵的变化规律,及其对应的李代数之间的关联,并从量子群的角度进行相关研究。
英文摘要
Generalized intersection matrix algebras (GIM algebras for short) form an important class of Lie algebras which have close relations to singularity theory, representation theory and Kac-Moody algebra theory. Among them GIM algebras determined by multi-fold affinizations of Cartan matrices are extensively studied since they are related to toroidal Lie algebras. We will study a class of GIM algebras and their quantum algebras with structural matrix being a generalized intersection matrix in the sense of P. Slodowy and given by the 2-fold affinization of Cartan matrices of ADE type. Since the covering matrix is an indefinite generalized Cartan matrix such that the GIM algebra can be realized as an involutory subalgebra of the Kac-Moody algebra given by the covering matrix of the GIM via an involution, and another involution related closely to it also gives rise to an indefinite Kac-Moody algebra, the study of the GIM algebras and their quantum algebras would be an interesting expansion of the theory of Kac-Moody algebras.
专著列表
科研奖励列表
会议论文列表
专利列表
国内基金
海外基金