基于4G/5G连续密集定位的个体出行链信息精细化提取理论与方法研究
结题报告
批准号:
52002030
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
姚振兴
依托单位:
学科分类:
交通规划与设计
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
姚振兴
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
传统居民出行调查数据缺陷长期影响交通规划实践效果、制约交通需求模型应用演进。4G/5G通信技术革新推进个体出行定位从“稀疏模糊”基站位置序列向“密集模糊”甚至“高频高精”坐标轨迹升级,为精细化个体出行信息采集带来空前契机,备受行业关注。因此,本课题致力于研究基于4G/5G连续密集定位轨迹的个体出行链信息精细化提取理论与方法。依托多场景实测与仿真试验,量化研究4G/5G通信网络追踪个体出行轨迹机理与效能,揭示4G/5G定位精度、信度与稳定性;探索4G/5G定位轨迹对个体出行链全局与局部特征的时空表达,应用时空聚类、深度学习、证析理论等建立个体出行链参数识别模型,重点突破出行端点、换乘点、交通方式和出行目的识别4大技术难点;研究出行链成链规则与成链模式,提出信息成链视角下出行链参数宏中微多维误差自检与协同优化方法。本研究可为交通管理部门提供个体出行调查新方法,为交通需求模型演进提供数据支撑。
英文摘要
The bottleneck of data quality caused by traditional residents' trip survey method has long affected the effectiveness of traffic planning and restricted the evolution of traffic demand analysis model. The innovative 4G/5G communication technology promotes the upgrading of individual travel trajectory detection from sparse-fuzzy base station sequence to dense-fuzzy or even high frequency and high precision coordinate trajectory, which brings opportunity for refined individual trip information collection and attracts industry attention. Therefore, this project focuses on the theory and method of refined extraction of individual trip information based on 4G/5G continuous dense positioning data. Relying on multi-scene measurement and simulation experiments, the mechanism and efficiency of 4G/5G positioning are studied quantitatively, and the accuracy, reliability and stability of 4G/5G positioning are revealed; By using advanced algorithms such as time-space clustering, in-depth learning and evidence analyzing, individual trip chain information detection models are proposed, breaking through the four major technical difficulties of trip end, mode transfer point, trip mode and trip purpose detection. The trip chain parameter link rules and modes are studied, a method of self-checking and collaborative optimization for macro, medium and micro trip information detection errors from the perspective of information chaining is proposed. This project can provide a new travel survey method for traffic management department and data support for traffic demand model innovation.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.16547/j.cnki.10-1096.20220115
发表时间:2022
期刊:导航定位学报
影响因子:--
作者:谢栋城;秦泽;周辰泠;姚振兴
通讯作者:姚振兴
DOI:10.1016/j.eswa.2022.116734
发表时间:2022-02
期刊:Expert Syst. Appl.
影响因子:--
作者:Zhenxing Yao;Fei Yang;Yudong Guo;P. Jin;Y. Li
通讯作者:Zhenxing Yao;Fei Yang;Yudong Guo;P. Jin;Y. Li
DOI:10.1080/23249935.2023.2217283
发表时间:2023-05
期刊:Transportmetrica A: Transport Science
影响因子:--
作者:Yudong Guo;Fei Yang;Siyuan Xie;Zhenxing Yao
通讯作者:Yudong Guo;Fei Yang;Siyuan Xie;Zhenxing Yao
DOI:10.1177/03611981211031537
发表时间:2021-07
期刊:Transportation Research Record
影响因子:1.7
作者:Fei Yang;Yanchen Wang;P. Jin;Dingbang Li;Zhenxing Yao
通讯作者:Fei Yang;Yanchen Wang;P. Jin;Dingbang Li;Zhenxing Yao
DOI:10.16097/j.cnki.1009-6744.2023.03.012
发表时间:2023
期刊:交通运输系统工程与信息
影响因子:--
作者:郭煜东;杨飞;周涛;姚振兴;张楚良;魏胤呈
通讯作者:魏胤呈
国内基金
海外基金