面向VR/AR场景的类脑视觉显著性预测模型研究

批准号:
62001289
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
朱丹丹
依托单位:
学科分类:
多媒体信息处理
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
朱丹丹
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
VR/AR全景图像/视频的显著性预测能够有效减少信息冗余,增强用户舒适感。但是当前对AR全景图像/视频的显著性预测研究仍是一项空白,对VR全景图像/视频的显著性预测方法研究大多聚焦于构建可计算的视觉注意模型,而忽略了类脑视觉注意机制。鉴于此,本项目拟开展VR/AR全景图像/视频中基于类脑视觉注意机制的显著性预测模型研究,具体包括三个方面:(1)探索类脑视觉注意感知融合机理,构建基于注意力感知特征融合的VR全景图像的显著性预测模型;(2)模拟类脑视觉注意机制,构建基于VR全景图像的浅层循环结构神经网络的轻量级显著性预测模型;(3)探索AR环境中特有的视觉注意机制,构建基于感受野模块网络的AR全景视频的轻量级显著性预测模型。以上每部分研究内容均遵循自底向上的“机理-模型-应用”一体化研究思路,其研究成果不仅可以推动新一代“脑启发人工智能”的发展,而且也促进VR/AR产品进入体验“舒适阶段”。
英文摘要
The saliency prediction of VR (Virtual Reality)/AR (Augmented Reality) panoramic images/videos can effectively reduce information redundancy and enhance user comfort. However, the current research on saliency prediction of AR panoramic images/videos is still blank. Most of the research on saliency prediction methods of VR panoramic images/videos focuses on the construction of computable visual attention models, and ignores brain-like visual attention mechanisms. Considering this, this project intends to conduct research on saliency prediction models based on brain-like visual attention mechanisms in VR/AR panoramic images/videos. Specifically, we plan to carry out research from the following three aspects. (1) We explore the mechanism of brain-like visual attention perception fusion, and construct saliency prediction model of VR panoramic image based on attention perception features fusion. (2) We simulate brain-like visual attention mechanism and propose a lightweight saliency prediction model of shallow recurrent structure neural network based on VR panoramic images. (3) We explore the unique the visual attention mechanism in the AR environment and construct a lightweight saliency prediction model of AR panoramic video based on the receptive field module network. The above three aspects of research contents follow a bottom-up and unified “mechanism-model-application” research route. The research results can not only promote the development of a new generation of “brain-inspired artificial intelligence”, but also push VR/AR products into the “comfort phase” of experience.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1007/s10489-023-04714-1
发表时间:2023-06
期刊:Applied Intelligence
影响因子:5.3
作者:Dandan Zhu;X. Shao;Kaiwei Zhang;Xiongkuo Min;Guangtao Zhai;Xiaokang Yang
通讯作者:Dandan Zhu;X. Shao;Kaiwei Zhang;Xiongkuo Min;Guangtao Zhai;Xiaokang Yang
DOI:10.1109/icme46284.2020.9102867
发表时间:2020-07
期刊:2020 IEEE International Conference on Multimedia and Expo (ICME)
影响因子:--
作者:Dandan Zhu;Yongqing Chen;Tian Han;Defang Zhao;Yucheng Zhu;Qiangqiang Zhou;Guangtao Zhai;Xiaokang Yang
通讯作者:Dandan Zhu;Yongqing Chen;Tian Han;Defang Zhao;Yucheng Zhu;Qiangqiang Zhou;Guangtao Zhai;Xiaokang Yang
DOI:10.1016/j.neucom.2022.09.107
发表时间:2022-09
期刊:Neurocomputing
影响因子:6
作者:Dandan Zhu;Kaiwei Zhang;Guokai Zhang;Qiangqiang Zhou;Xiongkuo Min;Guangtao Zhai;Xiaokang Yang
通讯作者:Dandan Zhu;Kaiwei Zhang;Guokai Zhang;Qiangqiang Zhou;Xiongkuo Min;Guangtao Zhai;Xiaokang Yang
DOI:10.1109/icme52920.2022.9859796
发表时间:2022-07
期刊:2022 IEEE International Conference on Multimedia and Expo (ICME)
影响因子:--
作者:Defang Zhao;Dandan Zhu;Xiongkuo Min;Jiaomin Yue;Kaiwei Zhang;Qiangqiang Zhou;Guangtao Zhai;Xiaokang Yang
通讯作者:Defang Zhao;Dandan Zhu;Xiongkuo Min;Jiaomin Yue;Kaiwei Zhang;Qiangqiang Zhou;Guangtao Zhai;Xiaokang Yang
DOI:10.1109/tmm.2023.3271022
发表时间:2024
期刊:IEEE Transactions on Multimedia
影响因子:7.3
作者:Dandan Zhu;Kaiwei Zhang;N. Zhang;Qiangqiang Zhou;Xiongkuo Min;Guangtao Zhai;Xiaokang Yang
通讯作者:Dandan Zhu;Kaiwei Zhang;N. Zhang;Qiangqiang Zhou;Xiongkuo Min;Guangtao Zhai;Xiaokang Yang
国内基金
海外基金
