多源遥感数据协同的植被覆盖地表土壤水分反演及多尺度验证研究
结题报告
批准号:
41971305
项目类别:
面上项目
资助金额:
61.0 万元
负责人:
王树果
依托单位:
学科分类:
遥感科学
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
王树果
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
由于地表粗糙度和植被等因素的影响,使得利用合成孔径雷达(SAR)观测来反演土壤水分仍是具有挑战性的工作。本项目拟利用多波段、多时相的SAR观测,协同可见光影像,主要开展三方面的研究:1)尝试采用时间序列的SAR观测和改进地表粗糙度的表达(以及与之相应的半经验模型)两种手段来消减粗糙度的影响,提高裸土状况下的土壤水分反演精度;2)利用光学遥感观测,分析比较不同植被参数在微波辐射传输模型中的适用性,从而更好的校正植被效应,改进土壤水分反演;3)将结合地面点观测、宇宙射线观测系统和模型模拟,对反演结果开展多尺度的真实性检验,从而更系统全面的度量反演结果的误差和不确定性。研究总体目标为发展新的土壤水分反演策略/方法,使之能更有效的对地表粗糙度和植被影响加以校正,进一步增强不同波段SAR数据土壤水分反演的可靠性和稳健性;以及依靠地面观测和模型模拟,发展针对SAR反演土壤水分的多尺度真实性检验方法。
英文摘要
Microwave remote sensing is a commonly used technique to obtain spatially distributed soil moisture information. Although many efforts have been made over decades, it is still challenging to retrieve soil moisture by using synthetic aperture radar (SAR) observations, due to strong impact caused by surface roughness and vegetation effect. Upon this background, this study proposes to use multi-temporal, multi-band SAR observations at L-, C- and X-band, in combination with optical imagery, to carry out three mian reseach contents: 1) two stategies will be investigated and further developed to eliminate the impact of surface roughness, i.e. through combined roughness parameter (and its related semi-empirical forward model) and multi-temporal imagery, to improve the accuracy of soil moisture estimaties in bare soil condition ; 2) considering the vegetation effect, we will explore which vegetaion parameter/index is optimal to be used in microwave radiative transfer model as vegetation description factors, and how to better acquire these factors at the pixel-scale in asscociation with optical remote senisng data ; 3) to perform multi-scale validation dependent on in situ measurements at three scales, from point and the Cosmic-Ray Neutron Probe (CRNP) and model simulations, to better quantify the error and uncertainty of retrievals. On this basis, the overall goal of this study is to evaluate multiply existing retrieval methods and to further develop them, in order to build a new retrieval stategy/method that can be less dependent on ancillary data and better deal with surface roughness and vegetation effect. Besides, methods for multi-scale validation of SAR retrieved soil moisture will be investigated, which can enhance our understanding of remote sensing product validaiton in terms of mulit-source observations across scales.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1109/jstars.2020.2984608
发表时间:2020-04
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
影响因子:5.5
作者:Liang Liang-Liang;Ting Huang;L. Di;Di Geng;Juan Yan;Shuguo Wang;Lijuan Wang;Li Li-Li;Bingqian Chen;Jianrong Kang
通讯作者:Liang Liang-Liang;Ting Huang;L. Di;Di Geng;Juan Yan;Shuguo Wang;Lijuan Wang;Li Li-Li;Bingqian Chen;Jianrong Kang
DOI:10.1109/jstars.2022.3233128
发表时间:2023
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
影响因子:5.5
作者:Siyi Qiu;Liang Liang-Liang;Qianjie Wang;Di Geng;Junjun Wu;Shuguo Wang;Bingqian Chen
通讯作者:Siyi Qiu;Liang Liang-Liang;Qianjie Wang;Di Geng;Junjun Wu;Shuguo Wang;Bingqian Chen
DOI:https://doi.org/10.3390/rs12213534
发表时间:2020
期刊:Remote Sensing
影响因子:5
作者:Liang Liang;Di Geng;Juan Yan;Siyi Qiu;Liping Di;Shuguo Wang;Lu Xu;Lijuan Wang;Jianrong Kang;Li Li
通讯作者:Li Li
DOI:https://doi.org/10.3390/rs13193889
发表时间:2021
期刊:Remote Sensing
影响因子:5
作者:Chunfeng Ma;Shuguo Wang;Zebin Zhao;Hanqing Ma
通讯作者:Hanqing Ma
DOI:10.3390/rs15112748
发表时间:2023-05
期刊:Remote. Sens.
影响因子:--
作者:Qianjie Wang;Liang Liang-Liang;Shuguo Wang;Sisi Wang;Lianpeng Zhang;Siyi Qiu;Yanyan Shi;Jin Shi;Chen Sun
通讯作者:Qianjie Wang;Liang Liang-Liang;Shuguo Wang;Sisi Wang;Lianpeng Zhang;Siyi Qiu;Yanyan Shi;Jin Shi;Chen Sun
国内基金
海外基金