海量深网数据源入口的自动发现与集成研究

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    61472296
  • 项目类别:
    面上项目
  • 资助金额:
    81.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    F0214.新型计算及其应用基础
  • 结题年份:
    2018
  • 批准年份:
    2014
  • 项目状态:
    已结题
  • 起止时间:
    2015-01-01 至2018-12-31

项目摘要

The Web has been rapidly "deepened" by the tremendous Web databases (WDBs) online with the potentially unlimited high-quality information hidden behind each WDB only entry, searchable form/query interface. Since the Deep Web(most of the contents from WDBs) is an important yet largely-unexplored frontier, great attentions are being paid in the fields of Web information search and virtual Web Big Data etc. However, there remain two basic challenges in them, the Web-scale automatic discovery and integration for WDBs'query interfaces due to the non-structured query interfaces with the 4V properties of Big Data: Volume, Variety, Velocity and Value over the Web. To address the two challenging problems and overcome limitations with respect to their non-modeling,inefficiently heuristic serial algorithms, and infeasible or incomplete sulosions for the problems,we will deeply research on methods of optimal modeling and efficient distributed parallel algorithms based on cloud computating for the challenging problems with abstract and formal description and solving problems. More important, on this basis, some instructively basic theories and methods for the complex problems/Big Data analysis and processing are expected to by summarizing.
随着Web在线数据库(Web Database, WDB)的激增,Web正在迅速地"深化",其绝大部分高质量的海量信息隐藏在WDB对外提供的唯一入口--查询接口后而无法由传统的搜索引擎索引到,因此,研究在Web信息搜索和Web大数据集成领域的两个亟待解决的基本关键难题:"海量WDBs入口的自动发现与集成"具有重要意义。本项目针对已有研究缺乏对问题进行抽象建模,采用启发式的单机串行低效算法,没有给出问题可行的完整性解决方案等缺陷,采用抽象与形式化描述与求解问题的方法,创新研究上述两个领域关键问题的有效建模方法、高效分布式并行算法,以期突破这两个领域关键难题给出问题可行的完整性解决方案。在此基础上,通过概括总结,揭示出一般复杂/"大数据"问题分析处理时所蕴含的一些基础理论和方法,为该类问题的有效求解起到一定的推动和借鉴作用。

结项摘要

随着Web在线数据库(Web Database, WDB)的激增,Web正在迅速地“深化”,其绝大部分高质量的海量信息隐藏在WDB对外提供的唯一入口——查询接口后而无法由传统的搜索引擎索引到,因此,研究在Web信息搜索和Web大数据集成领域的两个亟待解决的基本关键难题:“海量WDBs入口的自动发现与集成”具有重要意义。本项目针对已有研究缺乏对问题进行抽象建模,采用启发式的单机串行低效算法,没有给出问题可行的完整性解决方案等缺陷,采用抽象与形式化描述与求解问题的方法,创新研究上述两个领域关键问题的有效建模方法、高效分布式并行算法,以期突破这两个领域关键难题给出问题可行的完整性解决方案。在此基础上,通过概括总结,揭示出一般复杂/“大数据”问题分析处理时所蕴含的一些基础理论和方法,为该类问题的有效求解起到一定的推动和借鉴作用。. . 在对项目研究内容进行深入系统研究的基础上,产生了以下主要研究成果:. 1) 提出了深网数据源的自动发现的有效方法,并实现了其高效的并行深网数据源入口发现的爬虫;. 2) 提出了深网数据源入口--查询接口的有效集成的模型与解决方案,并给出了具体高效的实现;. 3) 对项目研究中所涉及到以下大数据关键/NP-难问题实现了突破。这些问题的突破不仅具有较重要的理论与应用价值,而且为相关大数据问题的建模与求解起到了推动和借鉴作用。. a. MLCS(Multiple Longest Common Subsequence)问题的研究 ,其研究成果已在领域顶级会议上发表论文2篇;. b. 大数据高维数据的聚类与数据流的聚类,其研究成果论文正在审稿期;. c. 大规模静态/动态图的划分,其研究成果论文正在审稿期。. 4) 集本项目研究成果于一体新开设了一门本科生专业前沿技术课程:“Web信息搜索”; . 5) 出版学术译著一部:“C++程序设计——基础、编程抽象与算法策略”;. 6) 培养计算机科学与应用、软件工程研究生12名,博士生4名。

项目成果

期刊论文数量(0)
专著数量(1)
科研奖励数量(0)
会议论文数量(4)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

李雁妮的其他基金

多变量时间序列的深度持续表示学习研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
多变量时间序列的深度持续表示学习研究
  • 批准号:
    62176202
  • 批准年份:
    2021
  • 资助金额:
    57.00 万元
  • 项目类别:
    面上项目

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码