复向量丛上的若干几何分析问题

批准号:
11801535
项目类别:
青年科学基金项目
资助金额:
26.0 万元
负责人:
张川静
依托单位:
学科分类:
A0109.几何分析
结题年份:
2021
批准年份:
2018
项目状态:
已结题
项目参与者:
张攀、潘长鹏、沈正晗
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
本项目中我们将着重研究复向量丛上典则度量的存在性、相关热流的收敛性以及Yang-Mills-Higgs理论中的一些几何分析问题。首先在一类非紧Gauduchon流形上研究解析稳定或者半稳定希格斯丛上典则度量的存在性;在拟射影流形上研究半稳定抛物希格斯丛和全纯对上更为广泛的Hitchin-Kobayashi对应;研究非稳定希格斯层上的Hermitian-Yang-Mills-Higgs 热流的收敛性,建立其极限希格斯层与代数几何中的Harder-Narasimhan-Seshadri 滤过之间的对应关系,并刻画其blow-up集。
英文摘要
In this project, we study the existence of the canonical metrics on complex vector bundles, the convergence of the related heat flows and some geometric analysis problems in Yang-Mills-Higgs theory. First, we study the existence of the canonical metrics on analytic stable or semistable Higgs bundles over noncompact Gauduchon manifolds. Second, we study the generalized Hitchin-Kobayashi correspondence for semistable parabolic Higgs bundles and holomorphic pairs on quasiprojective manifolds. Then, we study the convergence of the Hermitian-Yang-Mills-Higgs flow on nonstable Higgs sheaves, construct the correspondence between the limiting Higgs sheaf and the Harder-Narasimhan-Seshadri filtration of the initial Higgs sheaf, and obtain the information of the blow up set.
全纯丛上 Hermitian-Einstein 度量(或联络)的研究是几何分析、复几何研究中的一个重要且热门的课题。项目执行以来,我们按照计划开展以下方面的研究:非紧非Kähler流形上Higgs丛上典则度量的存在性方面;非紧Kähler流形上twisted holomorphic chains 上典则度量的存在性方面。项目实施三年间,我们主要取得以下研究成果:研究非紧非Kähler流形上的Higgs 丛,证明一类非紧Gauduchon流形上的解析稳定或半稳定Higgs 丛上存在Hermitian-Einstein度量或渐近Hermitian-Einstein度量;研究非紧Kähler流形上解析半稳定的twisted holomorphic chains,得到了推广的 Donaldson-Uhlenbeck-Yau定理;研究一类非紧Hermitian流形上的Higgs 丛,在更广泛的情形下求解Hermitian-Einstein方程。我们的上述成果分别发表在Trans. Amer. Math. Soc., Chin. Ann. Math. Ser. B,Ann. Mat. Pura Appl.上。项目执行期间我们共发表有项目标注的SCI论文3篇,完成项目的研究计划和研究目标,取得预期成果。
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1007/s11401-020-0193-x
发表时间:2020
期刊:Chinese Annals of Mathematics Series B
影响因子:0.5
作者:Zhang Chuanjing
通讯作者:Zhang Chuanjing
具正平均曲率的厄密特度量的存在性及相关问题的研究
- 批准号:12371062
- 项目类别:面上项目
- 资助金额:43.5万元
- 批准年份:2023
- 负责人:张川静
- 依托单位:
国内基金
海外基金
