概率方法求解Isaacs方程非线性Neumann边值问题研究

批准号:
12001470
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
肖立顺
依托单位:
学科分类:
随机分析与随机过程
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
肖立顺
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
非线性形式的倒向随机微分方程(简写为BSDE)由我国彭实戈院士及其合作者于1990年提出并迅速成为国际研究热点,在随机控制和偏微分方程(简写为PDE)等领域具有重要应用。BSDE理论的一个研究热点是非线性Feynman-Kac公式,即通过BSDE理论研究非线性PDE粘性解的概率解释及性质。目前,由于非线性Neumann边值问题相对复杂,其粘性解概率解释的相关研究相对较少。本项目旨在非Lipschitz条件下借助递归形式的状态受限随机微分对策问题研究Isaacs方程非线性Neumann边值问题的粘性解存在性和唯一性,从而建立Isaacs方程非线性Neumann边值问题的Feynman-Kac公式。本项目拟借助BSDE生成元表示定理方法证明此粘性解的概率解释,揭示Isaacs方程粘性解的概率解释问题与BSDE生成元表示问题之间的关系,为PDE粘性解存在性理论提供新的视角和思考方向。
英文摘要
The nonlinear Backward Stochastic Differential Equations (BSDEs for abbreviated) were proposed by academician Shige Peng and his coworkers in 1990. This theory became a hotspot of research promptly because its applications to various fields, such as stochastic optimal control and partial differential equation (PDE for abbreviated). A remarkable application of BSDE theory is nonlinear Feynman-Kac formula, which can be interpreted as studying probabilistic interpretation in viscosity sense for solutions of PDEs, or related properties, by BSDE theory. Currently, the research of probabilistic interpretation for nonlinear Neumann boundary value problems in the viscosity sense is insufficient because nonlinear Neumann problems are more complicated. The major object of this project is to study the existence and uniqueness for viscosity solutions of Isaacs equations with nonlinear Neumann boundary value problems under non-Lipschitz conditions utilizing stochastic differential game with state constraints and recursive cost functionals, thereby obtaining the Feynman-Kac formula for Isaacs equations with nonlinear Neumann problems. This project will prove the probabilistic interpretation for viscosity solutions using the representation theorem for generators of BSDEs. This approach can not only clarify the essential relationship between the probabilistic interpretation for solutions of Isaacs equations in viscosity sense and the representation theorem for generators of BSDEs, but also provides a novel perspective for the existence of viscosity solutions of PDEs.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:https://doi.org/10.1016/j.jmaa.2022.126610
发表时间:2023
期刊:Journal of Mathematical Analysis and Applications
影响因子:--
作者:Xiao Lishun;Fan Shengjun;Tian Dejian
通讯作者:Tian Dejian
DOI:10.3389/fendo.2022.924338
发表时间:2022
期刊:Frontiers in endocrinology
影响因子:5.2
作者:
通讯作者:
DOI:10.1007/s00415-023-12156-5
发表时间:2024-01-04
期刊:JOURNAL OF NEUROLOGY
影响因子:6
作者:Xu,Xiaozhou;Gu,Wen;Xiao,Lishun
通讯作者:Xiao,Lishun
国内基金
海外基金
