基于无模型学习的随机广义博弈算法及其应用研究
结题报告
批准号:
62003037
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
邹苏郦
依托单位:
学科分类:
控制理论与技术
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
邹苏郦
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
本项目聚焦随机广义博弈中多元耦合和高度随机对纳什均衡分析和求解带来的挑战,围绕随机问题的博弈机制设计、随机广义纳什均衡解特性分析、博弈中随机参数和耦合约束的处理以及不同随机环境下均衡解算法设计等关键问题展开研究。首先,为克服耦合和随机带来的挑战,将控制理论反馈理念引入到多参与者博弈中,分析随机广义纳什均衡解的特性,证明特性成立的充分条件。其次,设计基于无模型学习的算法求解纳什均衡,突破基于梯度内核设计迭代算法的范式,避免基于随机参数模型做决策造成的效益损失,形成耦合随机问题建模成博弈模型进而获得最优决策的理论方法与技术路线。最后,将此理论研究成果扩展到能源互联网中,设计综合能源决策服务平台,面向用户和电管部门实时调度和决策开展应用验证,实现能源综合梯级利用和用户自律协同的智能调度。本项目的研究可丰富博弈的理论成果,并为能源互联网最优控制和决策体系的建设提供技术支撑。
英文摘要
Theoretical analyses and scalable seeking algorithms of Nash equilibria (NE) for stochastic generalized games featuring heterogeneous coupling and strong stochasticity are chief in game theory and application in order to achieve safe and efficient equilibria without excessive centralization of control decisions. The project studies the theory development of stochastic generalized games and their applications in ubiquitous electric Internet of things, counting the aspects of game mechanism design for stochastic problems, sufficient conditions for key characteristics of stochastic generalized NE, control methods for uncertainties and coupling constraints and NE seeking algorithms under different stochastic environments. The way to deal with uncertainties and coupling constraints relies on introducing the concept of feedback into multi-player games. This could avoid the efficiency loss caused by the decision-making process which depends on the modelling of uncertainties. Moreover, the NE seeking algorithms is designed by learning the uncertainty effects, which is actually data-enabled control, and breaks free from the paradigm of gradient based iterative procedures. Under the supervision of the developed theoretical results, a comprehensive energy decision-making service platform is designed to carry out the optimal energy management and real-time scheduling and decision-making for users and power management departments, which will promote the penetration of renewable energy and the participation ratio of users. This research will promote the theoretical development of stochastic generalized games. On one hand, it contributes to the reference of mechanism design for stochastic problems. On the other hand, it supports the optimal decision making under the coupled and stochastic environments. Moreover, the benefit on economics and society will be foreseen and realized by extending theoretical results to the electrical engineering.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1007/s12555-021-0298-3
发表时间:2022-07
期刊:International Journal of Control, Automation and Systems
影响因子:--
作者:Peng Wang;Suli Zou;Jinhui Zhang;Zhongjing Ma
通讯作者:Peng Wang;Suli Zou;Jinhui Zhang;Zhongjing Ma
DOI:10.1016/j.enbuild.2022.112235
发表时间:2022-06
期刊:Energy and Buildings
影响因子:6.7
作者:Peng Wang;Zhongjing Ma;Mingdi Shao;Junbo Zhao;D. Srinivasan;Suli Zou;G. Wang
通讯作者:Peng Wang;Zhongjing Ma;Mingdi Shao;Junbo Zhao;D. Srinivasan;Suli Zou;G. Wang
DOI:10.1109/tsg.2022.3201814
发表时间:2023-03
期刊:IEEE Transactions on Smart Grid
影响因子:9.6
作者:Xu Zhou;Zhongjing Ma;Suli Zou;Jinhui Zhang;Yonglin Guo
通讯作者:Xu Zhou;Zhongjing Ma;Suli Zou;Jinhui Zhang;Yonglin Guo
DOI:10.1109/TAC.2022.3151225
发表时间:2023
期刊:IEEE Trans. on Automatic Control
影响因子:--
作者:Suli Zou;John Lygeros
通讯作者:John Lygeros
DOI:10.1016/j.apenergy.2023.122332
发表时间:2024-02
期刊:Applied Energy
影响因子:11.2
作者:Tianyu Wang;Zhongjing Ma;Suli Zou;Zhan Chen;Peng Wang
通讯作者:Tianyu Wang;Zhongjing Ma;Suli Zou;Zhan Chen;Peng Wang
有限理性参与者博弈理论及其在综合能源调度中的应用研究
  • 批准号:
    62373051
  • 项目类别:
    面上项目
  • 资助金额:
    50万元
  • 批准年份:
    2023
  • 负责人:
    邹苏郦
  • 依托单位:
国内基金
海外基金