课题基金基金详情
Cartan 型李代数及相关李代数的表示理论
结题报告
批准号:
11971440
项目类别:
面上项目
资助金额:
52.0 万元
负责人:
郭向前
依托单位:
学科分类:
李理论及其推广
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
郭向前
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
(特征零域上)Cartan型李代数是最重要的无限维李代数之一,在微分几何和其他数学分支都有重要应用。近年来,李代数表示理论发展迅速,伴随着新思想的建立和新方法的发现,许多长期未解的经典公开问题得到解决,为该领域的发展提供了新的动力。以此为契机,Cartan型李代数的表示理论也有显著进展,但其结果比较零散,未能形成完整的理论体系,许多重要问题仍未解决,许多未知领域尚需开拓。本项目将依托课题组多年从事相关研究的良好基础,努力吸取前人的研究成果,对Cartan型李代数及相关李代数的表示理论进行系统深入的研究。我们将在包含下列课题的研究上做出创新性的研究成果:不可约Harish-Chandra模的分类问题,广义最高权模的结构与特征标公式,特定条件下模的分类与刻画,权空间无限维和非权单模的构造,Cartan型李代数与Cartan型模李(超)代数及其他李代数表示理论的联系等。
英文摘要
The Cartan type Lie algebras (over fields of characteristic 0), which have many applications in differential geometry and other mathematical branches, are one of the most important classes of infinite-dimensional Lie algebras. In recent years, with the discoveries of new ideas and developments of new methods in the field of Lie algebra theory, large progresses have been made for the representations of Cartan type Lie algebras. In particular, some classical problems, that had been open for a very long time, were settled successfully, attracting many attentions from Lie algebraists of various interests and providing motivations of new developments. However, the results for Cartan type Lie algebras are rather scattered, many important problems remain unsettled and many new research areas need to be explored. Based on the already established theories, known results gained by other mathematicians in this field, and the research work we have done all these years, the present project will make deep and systematical studies in the research of representation theory of Cartan type Lie algebras and other related algebras. We shall obtain original results in the subjects including: classification of irreducible Harish-Chandra modules, characterizations and realizations of generalized highest weight modules, classifications of special classes of modules under certain conditions, constructions of irreducible modules with infinite-dimensional weight spaces or non-weight modules, the relations between the representations of Cartan type Lie algebras and their counterparts over fields of positive characteristic and other related algebras.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1016/j.jalgebra.2022.06.021
发表时间:2022-07
期刊:Journal of Algebra
影响因子:0.9
作者:Shujuan Li;Mengyao Qin;Xiangqian Guo
通讯作者:Shujuan Li;Mengyao Qin;Xiangqian Guo
DOI:--
发表时间:2023
期刊:Journal of Algebra
影响因子:--
作者:Xiangqian Guo;Xiaoqing Huo;Xuewen Liu
通讯作者:Xuewen Liu
A class of non-weight modules of U-q(sl(2)) and Clebsch-Gordan type formulas
Uq(sl2)和ClebschâGordan型公式的一类非权模
DOI:10.1515/forum-2020-0345
发表时间:2021
期刊:Forum Mathematicum
影响因子:0.8
作者:Cai Yan-an;Chen Hongjia;Guo Xiangqian;Ma Yao;Zhu Mianmian
通讯作者:Zhu Mianmian
DOI:10.1016/j.jalgebra.2019.08.035
发表时间:2020
期刊:Journal of Algebra
影响因子:0.9
作者:Xuewen Liu;Xiangqian Guo;Jing Wang
通讯作者:Xuewen Liu;Xiangqian Guo;Jing Wang
Simple weight modules with finite-dimensional weight spaces over Witt superalgebras
维特超代数上具有有限维权重空间的简单权重模块
DOI:10.1016/j.jalgebra.2021.01.017
发表时间:2020-01
期刊:Journal of algebra
影响因子:0.9
作者:Xue Yaohui;Lu Rencai
通讯作者:Lu Rencai
Kac-Moody 代数及相关李代数的表示理论
  • 批准号:
    11471294
  • 项目类别:
    面上项目
  • 资助金额:
    76.0万元
  • 批准年份:
    2014
  • 负责人:
    郭向前
  • 依托单位:
Witt代数及相关无限维李代数的表示理论
  • 批准号:
    11101380
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    22.0万元
  • 批准年份:
    2011
  • 负责人:
    郭向前
  • 依托单位:
与Virasoro 代数相关的无限维李代数的表示理论
  • 批准号:
    11026155
  • 项目类别:
    数学天元基金项目
  • 资助金额:
    3.0万元
  • 批准年份:
    2010
  • 负责人:
    郭向前
  • 依托单位:
国内基金
海外基金