Au/HC(NH2)2PbI3异质结纳米晶的可控制备及其光电转换性能增强机制研究

批准号:
62004155
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
阙美丹
依托单位:
学科分类:
半导体材料
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
阙美丹
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
针对钙钛矿纳米晶太阳能电池中因光生电荷复合率高而引起的载流子传输效率低和光电转换效率差等关键科学问题,本项目拟在HC(NH2)2PbI3(FAPbI3)量子点表面原位沉积Au纳米颗粒,从而构建Au/FAPbI3金属-半导体异质结纳米晶;将其作为光活性层组装在n-i-p型太阳能电池中,有效改善光生电荷在光活性层中的传输效率,进而提升电池的光电转换性能。通过掌握原位沉积参数对Au/FAPbI3微观结构的影响规律,实现Au颗粒的可控生长;深入研究Au/FAPbI3微观结构对其薄膜光电性能与电池光电转换性能的影响规律,揭示局域表面等离子体共振效应与高导电性的协同作用对电池光伏性能的增强机制;结合电池三维理论模型与光至电性能的仿真模拟,阐明光生电荷在Au/FAPbI3异质结纳米晶界面之间的微观迁移机理。本项目有望为开发高效光电转换材料和提升钙钛矿纳米晶太阳能电池的光伏性能,提供有效思路与理论指导。
英文摘要
High photogenerated-carrier recombination rate of the photoelectric material poses a great challenge to the photogenerated-carrier transport efficiency and photoelectric conversion efficiency (PCE) of perovskite nanocrystalline solar cells. In this proposal, to tackle this thorny problem, a situ-growth method will be employed to deposit Au nanoparticles on HC(NH2)2PbI3 (FAPbI3) quantum dots, forming a metal-semiconductor heterojunction of Au/FAPbI3 nanocrystals (NCs). The Au/FAPbI3 NCs will be further fabricated as the photoactive layer to assemble into n-i-p type perovskite nanocrystalline solar cells. The photogenerated-carrier transport efficiency among the Au/FAPbI3 nanocrystaline films will be evidently accelerated, thus enhancing their corresponding PCE of solar cells. The controllable growth of Au particle will be achieved, through grasping the influence of in-situ deposition parameters on the microstructure of Au/FAPbI3 NCs. The synergistic mechanism of the local surface plasmon resonance effect and high conductivity for enhancing the PCE of solar cells will be revealed, by a profound exploration of the effects of Au/FAPbI3 microstructures influenced on the optoelectronic properties of their films and the PCE of solar cells. Besides, combined with three-dimensional theoretical model and the photoelectric simulation of solar cells, the micro-migration behavior of photogenerated-carriers among Au/FAPbI3 heterojunction NCs will be clarified. The present proposal will provide a new methodology and a theoretical guidance for developing high-performance photoelectrical materials and improving the photovoltaic performance of perovskite nanocrytalline solar cells.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1016/j.colsurfa.2022.130249
发表时间:2022-09
期刊:Colloids and Surfaces A: Physicochemical and Engineering Aspects
影响因子:--
作者:M. Raza;Hui-Jun Tian;Z. Shui;Liangliang Zhu;Meidan Que;Xi Chen
通讯作者:M. Raza;Hui-Jun Tian;Z. Shui;Liangliang Zhu;Meidan Que;Xi Chen
DOI:10.1021/acsami.0c18391
发表时间:2021-01
期刊:ACS applied materials & interfaces
影响因子:9.5
作者:Meidan Que;Yang Zhao;Yawei Yang;L. Pan;Wanying Lei;Weihua Cai;Hudie Yuan;Jin Chen;G. Zhu
通讯作者:Meidan Que;Yang Zhao;Yawei Yang;L. Pan;Wanying Lei;Weihua Cai;Hudie Yuan;Jin Chen;G. Zhu
DOI:10.1016/j.apsusc.2023.156773
发表时间:2023-02
期刊:Applied Surface Science
影响因子:6.7
作者:Weihua Cai;Xinyu Ma;Jin Chen;R. Shi;Yabo Wang;Yawei Yang;D. Jing;Hudie Yuan;Jing Du;Meidan Que
通讯作者:Weihua Cai;Xinyu Ma;Jin Chen;R. Shi;Yabo Wang;Yawei Yang;D. Jing;Hudie Yuan;Jing Du;Meidan Que
DOI:10.1039/d3ta04382g
发表时间:2023
期刊:Journal of Materials Chemistry A
影响因子:11.9
作者:Weihua Cai;Yabo Wang;Lei Zhao;Xun Sun;Jun Xu;Jin Chen;Ruochen Shi;Peihong Ma;Meidan Que
通讯作者:Weihua Cai;Yabo Wang;Lei Zhao;Xun Sun;Jun Xu;Jin Chen;Ruochen Shi;Peihong Ma;Meidan Que
DOI:10.1002/admi.202200636
发表时间:2022-09
期刊:Advanced Materials Interfaces
影响因子:5.4
作者:Boyang Wang;Xingtian Yin;Shoaib Iqbal;Meidan Que;W. Que
通讯作者:Boyang Wang;Xingtian Yin;Shoaib Iqbal;Meidan Que;W. Que
国内基金
海外基金
