PS1调控线粒体动态平衡和线粒体功能的机制研究

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    31871020
  • 项目类别:
    面上项目
  • 资助金额:
    59.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    C0901.分子与细胞神经生物学
  • 结题年份:
    2022
  • 批准年份:
    2018
  • 项目状态:
    已结题
  • 起止时间:
    2019-01-01 至2022-12-31

项目摘要

Mitochondrial dysfunction is a prominent and early feature of Alzheimer's disease (AD). Mitochondria are dynamics organelles that undergo continual fission and fusion events which serve crucial physiological function. Our recent studies demonstrated that an altered balance in mitochondrial fission and fusion was likely an important mechanism leading to mitochondrial and neuronal dysfunction in AD. Mutations in presenilins (PS) cause early-onset familial form of AD (FAD). PS1 is found in mitochondria and mutant PS1 affects mitochondrial function and transport. Our preliminary studies revealed that PS1 knockout (KO) primary neurons demonstrated significant changes in mitochondria dynamics which could be prevented by co-expression of wild-type PS1, but not FAD-causing PS1 mutant, suggesting that presenilins are involved in the regulation of mitochondrial dynamics which may be impaired by PS1 FAD mutations. Most importantly, we further found that PS1 physically interacted with DLP1, a key regulator of both mitochondrial fission and distribution. These studies suggest that a detailed investigation into the potential direct role of PS1 in mitochondrial dynamics is warranted. Amyloid-β (Aβ) peptides are major of components of senile plaques in AD. And, calcium dyshomeostasis has been implicated as an early manifestation of this devastating disease. In addition to its crucial role in Aβ production, PS1 has been found to regulate calcium release from endoplasmic reticulum (ER). The activity of DLP1 is subject to tight regulation through phosphorylation/dephophoayrlation by Cyclin-dependent kinase 1 (CDK1), calcineurin and Cyclic AMP-dependent protein kinase A (PKA). Our preliminary studies found altered phosphorylation of DLP1 in AD brain and AD models. Therefore, these studies suggest that PS1 may also regulate mitochondrial dynamics and function indirectly through Aβ and calcium signaling. Overall, based on our novel findings, we hypothesize that FAD-associated PS1 mutants cause impaired regulation of mitochondrial dynamics through either specific direct interaction with DLP1 or indirect effect of which causes mitochondrial dysfunction and redistribution which adversely affects neuronal functions including causing synaptic abnormalities in AD. To begin to address this hypothesis, the following specific aims will be pursued: 1) to determine the effect of FAD-associated PS1 mutants on mitochondria dynamics; 2) to determine whether PS1-DLP1 interaction directly mediates the effects of FAD-associated PS1 mutants on mitochondrial dynamics; and 3) to determine whether Aβ and calcium signaling indirectly mediates the effects of FAD-associated PS1 mutants on mitochondrial dynamics. By focusing on PS1/DLP1 interaction, calcium signaling and DLP1 phosphorylation, this study will begin to reveal the underlying mechanisms by which AD-associated PS1 induces mitochondrial abnormalities, and likely lead to novel therapeutic targets. Additionally, since calcium-dependent calcineurin plays an important role in mediating Aβ-induced synaptic dysfunction and memory defects, the study of calcineurin-dependent DLP1 dephosphorylation will likely link two important deficits (i.e., calcium dyshomeostasis and mitochondrial dysfunction) involved in AD. Similarly, ectopic re-expression of cell cycle-related proteins including CDK1 were reported in AD neurons, CDK1-dependent DLP1 phosphorylation will also establish a new link between aberrant cell cycle and mitochondrial dysfunction. In addition, as increasing evidence supports a critical role of abnormal mitochondrial dynamics in other neurodegenerative diseases such as Parkinson’s disease and Huntington’s disease, the proposed study will have broader implications in the field of neurodegeneration.
线粒体功能异常是老年痴呆症(AD)的早期和显著特征之一,但是其中的机制仍不清楚。线粒体的分裂和融合对其功能至关重要。我们最近的研究发现线粒体分裂和融合异常导致AD中线粒体和突触功能异常。早老素蛋白(Presenilins, PS)突变可导致早发家族性AD(FAD)。前期结果显示敲除PS1会导致线粒体的形态、分布和运动显著改变,表达野生型PS1可逆转此异常,而表达FAD相关的突变PS1却无法逆转PS1敲除引起的缺陷。此结果提示与FAD相关的PS1突变可导致线粒体动态平衡的异常。我们还发现1)PS1与调控线粒体分裂和分布的关键蛋白DLP1蛋白相互作用。2)在AD病人和AD模型中,DLP1的磷酸化水平显著改变。在此基础上我们将利用细胞和动物模型深入研究FAD相关突变PS1对线粒体动态平衡和功能的影响,阐明突变PS1通过线粒体异常引发AD的分子机制,寻找潜在治疗AD的药物靶点。

结项摘要

阿尔兹海默病(AD)是世界范围内流行最为广泛的神经退行性疾病,线粒体障碍是其重要的病理特征,而PS1突变是导致此疾病的基因之一。PS1与线粒体的功能的关系以及在AD发病中的作用仍未有明确的报道。本课题旨在阐明PS1对线粒体的影响极其具体机制。通过本课题的研究,我们发现1)PS1定位于线粒体基质中,其与线粒体内膜的多个蛋白具有相互作用,并参与线粒体功能的调控,在维持线粒体内膜和嵴的形态稳定发挥重要作用。如果PS1异常,线粒体功能也将受损,进而影响细胞功能-包括mtDNA损伤修复、细胞生长、凋亡。对于PS1功能的深入研究将为我们进一步理解阐明AD的发病机制具有重要意义,同时为治疗AD提供新的治疗靶点。2)同时我们还发现调控线粒体动态平衡的蛋白Drp1能通过影响微管蛋白的乙酰化调控微管的稳定性,从而影响神经元的生长发育。这对于我们深入理解Drp1蛋白的功能提供了新的方向。并且Drp1在AD等神经退行性疾病中也有改变,也是潜在的药物靶点,深入理解Drp1的生物学功能对于研究开发临床药物具有重要意义。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

垄作与覆膜对川中丘陵春玉米根系分布及产量的影响
  • DOI:
    --
  • 发表时间:
    2016
  • 期刊:
    应用生态学报
  • 影响因子:
    --
  • 作者:
    程秋博;王兴龙;袁继超;孔凡磊
  • 通讯作者:
    孔凡磊
基于VC的西门子840D数控系统人机界面开发方法
  • DOI:
    --
  • 发表时间:
    2013
  • 期刊:
    重庆理工大学学报(自然科学版)
  • 影响因子:
    --
  • 作者:
    金陵;张卫青;王兴龙
  • 通讯作者:
    王兴龙
荧光光谱法和PSO-BP神经网络在山梨酸钾浓度检测中的应用
  • DOI:
    --
  • 发表时间:
    2015
  • 期刊:
    中国激光
  • 影响因子:
    --
  • 作者:
    魏蒙;王兴龙;王志芳;王佳亮
  • 通讯作者:
    王佳亮
基于适配体和纳米金的石英晶体微天平传感器检测汞
  • DOI:
    10.13595/j.cnki.issn1000-0720.2016.0060
  • 发表时间:
    2016
  • 期刊:
    分析试验室
  • 影响因子:
    --
  • 作者:
    王兴龙;袁敏;徐斐;晏绍庆;曹慧;于劲松
  • 通讯作者:
    于劲松
新城疫病毒HN蛋白酵母双杂交诱饵载体的构建及鉴定
  • DOI:
    --
  • 发表时间:
    2016
  • 期刊:
    西北农林科技大学学报(自然科学版)
  • 影响因子:
    --
  • 作者:
    杜恩岐;王兴龙;党如意;杨增岐
  • 通讯作者:
    杨增岐

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码