几类测度数据下非线性椭圆和抛物型方程解的Calderón-Zygmund正则性

批准号:
12001160
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
张俊杰
依托单位:
学科分类:
椭圆与抛物型方程
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
张俊杰
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
近年来,源于等离子体物理学、流体力学、等多孔介质等实际问题的右端项为L^1函数或Radon测度的椭圆和抛物型方程解的正则性吸引了大量研究人员的兴趣。本项目拟综合运用扰动技术、内蕴几何方法和双参数技术等研究几类非线性方程的Calderón-Zygmund正则性,主要包括以下三部分:(1)针对右端项为L^1函数或Radon测度且满足p-增长条件的非线性椭圆方程,研究其解的Calderón-Zygmund型估计。(2)针对右端项为L^1函数或Radon测度且满足p-增长条件的非线性抛物方程,研究其解的Calderón-Zygmund型估计。(3)针对右端项为L^1函数或Radon测度且满足非标准增长条件的非线性椭圆和抛物方程,研究其解的非线性Calderón-Zygmund型估计。本项目的研究成果将在很大程度上拓展非线性偏微分方程的Calderón-Zygmund理论。
英文摘要
In recent years, a large number of researchers have been interested in the regularity of solutions to elliptic and parabolic equations with L^1 function or Radon measure, which arise naturally from practical problems such as plasma physics, fluid mechanics, porous media and so on. This project is devoted to studing the Calderón-Zygmund regularity of several kinds of nonlinear equations by using perturbation technique, intrinsic geometry method and two parameters technique, etc, which includes the following three parts: (1) The main purpose is to study the Calderón-Zygmund type estimates of solutions to nonlinear elliptic equations with L^1 function or Radon measure and satisfying p-growth condition; (2) For nonlinear parabolic equations with L^1 function or Radon measure and satisfying p-growth condition, the main purpose is to study the Calderón-Zygmund type estimates of their solutions; (3) We study the nonlinear Calderón-Zygmund type estimates of solutions to nonlinear elliptic and parabolic equations with L^1 function or Radon measure and satisfying nonstandard growth condition. The results of this project will greatly expand the Calderón-Zygmund theory of nonlinear partial differential equations.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.3934/dcdss.2021080
发表时间:2021
期刊:Discrete & Continuous Dynamical Systems - S
影响因子:--
作者:Junjie Zhang;Shenzhou Zheng;Chunyan Zuo
通讯作者:Junjie Zhang;Shenzhou Zheng;Chunyan Zuo
DOI:10.1016/j.jmaa.2023.127080
发表时间:2023-02
期刊:Journal of Mathematical Analysis and Applications
影响因子:1.3
作者:Junjie Zhang;Shenzhou Zheng
通讯作者:Junjie Zhang;Shenzhou Zheng
DOI:10.1016/j.jde.2023.07.003
发表时间:2023
期刊:Journal of Differential Equations
影响因子:2.4
作者:Junjie Zhang;Shenzhou Zheng;Zhaosheng Feng
通讯作者:Junjie Zhang;Shenzhou Zheng;Zhaosheng Feng
DOI:10.1016/j.jde.2021.01.042
发表时间:2021
期刊:Journal of Differential Equations
影响因子:2.4
作者:Jie Xiao;Junjie Zhang
通讯作者:Junjie Zhang
DOI:10.1007/s41808-022-00151-2
发表时间:2022-02
期刊:Journal of Elliptic and Parabolic Equations
影响因子:0.8
作者:Junjie Zhang;Shenzhou Zheng
通讯作者:Junjie Zhang;Shenzhou Zheng
国内基金
海外基金
