基于图式理论的中学生阅读能力提升模型构建

批准号:
62007004
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
彭炜明
依托单位:
学科分类:
教育信息科学与技术
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
彭炜明
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
阅读是最重要的语言技能之一,阅读能力是语文学科教学、认知心理学、教育技术等领域持续跟进的研究热点。本项目从整个社会提升中学生阅读能力的迫切需求出发,基于图式理论,将阅读者和阅读资源置于共同的认知图式空间中,期待通过图式结构对比分析来动态评价学生阅读能力,优化阅读资源配置。研究内容为中学生阅读能力提升模型,包括组织模型、阅读者模型和资源模型,分别研究:基于阅读阶段、阅读单元的专题阅读组织框架;基于阅读者学习成果输出和障碍诊断分析的阅读者能力画像和兴趣画像;基于图解结构、图谱结构的语料库深加工方案,以及阅读资源的难度画像和知识画像。本项目的最终应用输出为集图解分析工具、语文知识图谱和深加工语料库于一体的中学生专题阅读学习平台。
英文摘要
Reading is one of the most important language skills. Enhancing reading comprehension is a trending research area in language education, cognitive psychology, and education technology. To fulfill the critical need of improving Chinese reading abilities of middle school students, this project constructs a common cognitive schema for both readers and reading resources using schema theory, so as to evaluate students' reading abilities dynamically and optimize the allocation of reading resources through comparing schema structure drawn from readers with that derived from reading resources. The main research is a reading skill improvement model for middle school students, including organization module, reader module and reading resource module. The organization module establishes an overall framework based on reading stages and units. The reader module produces reading skill portrait and interest portrait based on readers' learning outcome and diagnostic analysis of barriers to reading. The resource module integrates diagrammatic structure and knowledge graph extracted to form deep processing corpus, and produces difficulty and knowledge portraits. One of this project's outcomes is a learning platform for middle school students that integrates diagrammatic analysis tools, Chinese knowledge graph and deep processing corpus.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
Multi-granular Intuitionistic Fuzzy Three-Way Decision Model Based on the Risk Preference Outranking Relation
基于风险偏好优先关系的多粒度直觉模糊三支决策模型
DOI:10.1007/s12559-021-09888-9
发表时间:2021-07
期刊:Cognitive Computation
影响因子:5.4
作者:Xian-wei Xin;Ji-hua Song;Zhan'ao Xue;Jingbo Sun;Wei-ming Peng
通讯作者:Wei-ming Peng
ConAs-GRNs: Sentiment Classification with Construction-Assisted Multi-Scale Graph Reasoning Networks
ConAs-GRN:利用构建辅助的多尺度图推理网络进行情感分类
DOI:10.3390/electronics11121825
发表时间:2022-06
期刊:Electronics
影响因子:2.9
作者:Bo Chen;Weiming Peng;Jihua Song
通讯作者:Jihua Song
A Machine Learning Classification Algorithm for Vocabulary Grading in Chinese Language Teaching
一种用于汉语教学词汇评分的机器学习分类算法
DOI:10.17559/tv-20210128043310
发表时间:2021-06
期刊:TEHNICKI VJESNIK-TECHNICAL GAZETTE
影响因子:0.9
作者:Zhang Yinbing;Song Jihua;Peng Weiming;Guo Dongdong;Song Tianbao
通讯作者:Song Tianbao
DOI:10.1007/s11227-023-05640-2
发表时间:2023-09
期刊:J. Supercomput.
影响因子:--
作者:Jingbo Sun;Weiming Peng;T. Song;Haitao Liu;Shuqin Zhu;Jihua Song
通讯作者:Jingbo Sun;Weiming Peng;T. Song;Haitao Liu;Shuqin Zhu;Jihua Song
CharAs-CBert: Character Assist Construction-Bert Sentence Representation Improving Sentiment Classification.
CharAs-CBert:字符辅助构建-Bert句子表示改善情感分类
DOI:10.3390/s22135024
发表时间:2022-07-03
期刊:Sensors (Basel, Switzerland)
影响因子:--
作者:
通讯作者:
国内基金
海外基金
