基于统一物理模型的主被动微波联合土壤水分反演研究
批准号:
41971317
项目类别:
面上项目
资助金额:
61.0 万元
负责人:
曾江源
依托单位:
学科分类:
遥感科学
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
曾江源
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
土壤水分是连接陆地水、能量和碳循环的关键水文变量。主、被动微波信号对土壤水分具有不同的响应机制,能够提供互补信息。如何将两者有机结合得到更加精确的土壤水分是当前的研究热点与难点。针对现有主被动联合反演算法的不足,项目拟基于国内外的机载与星载SMAP主被动微波数据,开展以下研究:(1)选择具有物理一致性的主被动TVG模型为前向模型,进一步整合考虑多次散射效应的AIEM模型对其进行完善,提高其全极化模拟能力;(2)基于详实的地面观测与遥感资料,利用全局敏感性分析方法确定不同地表状况下TVG模型的敏感参数,完成模型的标定;(3)基于标定的TVG模型,通过构建代价函数确定主被动微波及其极化组合的最优模式,进而联合同尺度的主被动微波观测反演得到土壤水分并验证其精度。项目有望进一步揭示主被动微波土壤水分联合反演的遥感机理,提高其适用范围和反演精度,为我国未来的主被动微波卫星提供理论支撑和算法支持。
英文摘要
Soil moisture is a critical hydrological variable that links the terrestrial water, energy, and carbon cycles. Active and passive microwave signals respond differently to soil moisture and can provide complementary information on it. How to combine active and passive microwave observations to obtain more accurate soil moisture retrievals is still a challenging issue and becomes the current research hotspot. To solve the drawbacks of current active-passive combined soil moisture retrieval algorithms, the project will carry out research based on both airborne and spaceborne (i.e., SMAP) active and passive microwave observations in the following aspects: (1) The physically consistent active-passive Tor Vergata (TVG) model will be adopted as the forward model, and the multiple scattering AIEM model will be integrated into the TVG model to further improve the full-polarization simulation accuracy of the TVG model; (2) Based on detailed ground observations and remotely sensed datasets, the global sensitivity analysis method will be employed to determine the sensitive parameters of TVG model under different ground conditions to calibrate the TVG model; (3) Based on the calibrated TVG model, the optimal mode of active and passive microwave signals and their polarization combinations for soil moisture retrieval will be determined by constructing a cost function. Soil moisture will be then retrieved by combining use of both active and passive microwave observations at the same spatial scale, and the accuracy of soil moisture retrievals will be validated by using dense ground measurements. This project is expected to further reveal the mechanism of soil moisture retrieval using both active and passive observations, and to improve both the applicability and accuracy of soil moisture retrieval algorithm, thus providing theoretical and algorithmic support for future active-passive microwave satellites in China.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
Depolarized Scattering of Rough Surface With Dielectric Inhomogeneity and Spatial Anisotropy
具有介电不均匀性和空间各向异性的粗糙表面的去偏振散射
DOI:10.1109/tgrs.2020.2999543
发表时间:2021
期刊:IEEE Transactions on Geoscience and Remote Sensing
影响因子:8.2
作者:Ying Yang;Kun-Shan Chen;Xiaofeng Yang;Zhao-Liang Li;Jiangyuan Zeng
通讯作者:Jiangyuan Zeng
Evaluation of six satellite- and model-based surface soil temperature datasets using global ground-based observations
使用全球地面观测数据评估六个基于卫星和模型的表面土壤温度数据集
DOI:10.1016/j.rse.2021.112605
发表时间:2021-10
期刊:Remote Sensing of Environment
影响因子:13.5
作者:Hongliang Ma;Jiangyuan Zeng;Xiang Zhang;Peng Fu;Donghai Zheng;Jean-Pierre Wigneron;Nengcheng Chen;Dev Niyogi
通讯作者:Dev Niyogi
DOI:10.3390/rs15174243
发表时间:2023-08
期刊:Remote. Sens.
影响因子:--
作者:J. Zeng;Jian Peng;Wei Zhao;Chun-yang Ma;Hongliang Ma
通讯作者:J. Zeng;Jian Peng;Wei Zhao;Chun-yang Ma;Hongliang Ma
DOI:10.1109/tgrs.2021.3115140
发表时间:2021
期刊:IEEE Transactions on Geoscience and Remote Sensing
影响因子:8.2
作者:J. Zeng;Pengfei Shi;Kunshan Chen;Hongliang Ma;H. Bi;C. Cui
通讯作者:J. Zeng;Pengfei Shi;Kunshan Chen;Hongliang Ma;H. Bi;C. Cui
DOI:10.1016/j.rse.2022.113344
发表时间:2023-01
期刊:Remote Sensing of Environment
影响因子:13.5
作者:Hongliang Ma;Xiaojun Li;J. Zeng;Xiang Zhang;Jianzhi Dong;Nengcheng Chen;L. Fan;Morteza Sadeghi
通讯作者:Hongliang Ma;Xiaojun Li;J. Zeng;Xiang Zhang;Jianzhi Dong;Nengcheng Chen;L. Fan;Morteza Sadeghi
基于L波段SMAP与多波段AMSR2的青藏高原土壤水分反演算法研究
- 批准号:41601371
- 项目类别:青年科学基金项目
- 资助金额:19.0万元
- 批准年份:2016
- 负责人:曾江源
- 依托单位:
国内基金
海外基金















{{item.name}}会员


