基于生物正交反应快速形成水凝胶用于神经干细胞3D共打印及脊髓损伤修复的研究
批准号:
31971326
项目类别:
面上项目
资助金额:
57.0 万元
负责人:
裴仁军
依托单位:
学科分类:
生物与医学工程新技术新方法
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
裴仁军
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
生物3D打印是解决器官供需矛盾的有效方案,现阶段生物3D打印的瓶颈在于能否找到适合细胞共打印的理想 “生物墨水”。为研发用于器官再造的可细胞3D共打印的新型生物材料,本项目尝试从生物材料选择、生物正交反应的引入、干细胞3D共打印、活体移植四个方面进行设计,以达到基于生物材料和干细胞的脊髓损伤的有效修复。将以胶原蛋白和透明质酸为生物材料,分别以反应温和且高效的Cys/CBT和TCO/Tz两种生物正交反应体系构建可快速形成水凝胶的“生物墨水”,以装载有神经再生因子的明胶纳米粒控制因子的缓释,实现体外干细胞/“生物墨水”/再生因子的3D打印,形成可移植的神经支架。并构建大鼠全横断脊髓损伤模型,详细研究移植支架对脊髓损伤的修复效果。通过本项目的实施,有望探索出生物材料、成胶方式、再生因子、干细胞对损伤修复效果的影响规律,为研制出满足临床需求的脊髓损伤修复的创新性组织工程支架材料提供依据和奠定基础。
英文摘要
Currently, organ transplantation is the most effective way to cure end-stage organ diseases, but limited by severe shortage of donor organs. 3D bioprinting is a revolutionary technology for the fabrication of complex functional living tissues and organs due to its patient-specific design, high precision of geometrical structures and cellular distribution. However, current challenge of 3D bioprinting is the lack of ideal “bioinks” with great printability, biocompability and biodegradability. In order to develop the suitable system for 3D bioprinted tissues and organs, we plan to design and carry out this study in terms of the selection of biomaterials, the application of bioorthogonal reactions, cells-laden 3D bioprinting and living organ transplantation. Collagen (Col) and hyaluronic acid (HA) are the promising biomaterials for applications in biomedical field. Therefore, we choose them as the main structural materials in this study..Bioorthogonal reactions have rapidly attracted increasing interest, which occur specifically between functional groups and do not react with biological entities under physiological conditions. Among these reactions, a thiol-based bioorthogonal reaction between 2-cyanobenzothiazole (CBT) and cysteine (Cys), which happens in the firefly body with fast reaction kinetics, high efficiency and biocompatibility. In this study, collagen and HA are going to be used as main biomaterials and Cys/CBT-based bioorthogonal reaction pairs are separately modified onto Col/HA and used as crosslinker, and then the printable biomaterials are prepared. Moreover, the inverse electron-demand Diels–Alder addition reaction between Tz and TCO possesses a second-order rate constant of 10(3)-10(5) M−1 S−1, which is by far the fastest second-order rate constant among all these kinds of bioorthogonal reactions. This hydrogel system provides a suitable microenvironment for survival and proliferation of stem cells. In this study, we will aim to synthesize Col-TCO and HA-Tz, and use this hydrogel system to build 3D constructs through 3D bioprinting technology. .Spinal cord injury (SCI) is a life-shattering neurological disorder that often leads to permanent sensory and motor malfunction. Because neural stem cells (NSCs) can self-renew and differentiate into neurons, astrocytes, and oligodendrocytes, NSCs transplantation is considered to be a promising and an effective approach for the therapy of SCI, whereas challenges are the low survival of NSCs and glial cells differentiation of most NSCs under the injured spinal cord condition. Neurotrophic factors, such as brain derived neurotrophic factor (BDNF) and Neurotrophin-3 (NT-3), encourage the regrowth of severed axons, promote the differentiation of NSCs and are thought to be responsible for the survival of neurons. However, the quick degradation of neurotrophic factors is also a major problem. In this study, we demonstrate a controlled release system for neurotrophic factors based on gelatin nanoparticles as carriers. Gelatin nanoparticles are common delivery vehicles for numerous biomolecules in biomedical applications..In this study, we hope to provide ideal “bioinks” consisting of bioothorgonal group modified Col/HA, NSCs and neurotrophic factors-loading gelatin nanoparticles, which integrate the great biomaterials, bio-friendly crosslinking method for forming hydrogels, stem cells and controllable release carrier into one system, aiming to build living spinal cord scaffolds through 3D bioprinting technology. Thereafter, we are going to evaluate the recovery of the spinal cord injured animals by transplantation of 3D bioprinted living spinal cord scaffolds. Furthermore, the influence of biomaterials, crosslinking methods, growth factors and stem cells on spinal cord injury repair will also be analyzed. After above-mentioned studies, we hope to provide reliable and valuable basis for the clinical applications of innovative scaffolds for spinal cord injury repair.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1039/d1tb01871j
发表时间:2022
期刊:Journal of Materials Chemistry B
影响因子:7
作者:Liwei Zhang;Yajie Zhang;Fanshu Ma;Xingzhu Liu;Yangzhong Liu;Yi Cao;Renjun Pei
通讯作者:Renjun Pei
DOI:10.1039/d1ma00285f
发表时间:2021
期刊:Materials Advances
影响因子:5
作者:Yajie Zhang;Min Liu;R. Pei
通讯作者:Yajie Zhang;Min Liu;R. Pei
Injectable thioketal-containing hydrogel dressing accelerates skin wound healing with the incorporation of reactive oxygen species scavenging and growth factor release
可注射的含硫缩酮的水凝胶敷料通过结合活性氧清除和生长因子释放来加速皮肤伤口愈合
DOI:10.1039/d1bm01179k
发表时间:2021-11-02
期刊:BIOMATERIALS SCIENCE
影响因子:6.6
作者:An, Zhen;Zhang, Liwei;Pei, Renjun
通讯作者:Pei, Renjun
DOI:10.1016/b978-0-08-102906-0.00023-4
发表时间:2020
期刊:
影响因子:--
作者:Azadeh Mostafavi;Jacob Quint;Carina S. Russell;A. Tamayol
通讯作者:Azadeh Mostafavi;Jacob Quint;Carina S. Russell;A. Tamayol
DOI:--
发表时间:2023
期刊:Engineered Regeneration
影响因子:--
作者:Zahid Hussain;Shah Mehmood;Xingzhu Liu;Yuanshan Liu;Guocheng Wang;Renjun Pei
通讯作者:Renjun Pei
构建T2/T1切换型MRI造影剂及其用于移植干细胞活体内命运示踪的研究
- 批准号:22274167
- 项目类别:面上项目
- 资助金额:54万元
- 批准年份:2022
- 负责人:裴仁军
- 依托单位:
基于多孔金纳米海绵的空间限阈效应、红细胞膜包裹、适配体靶向的高弛豫率高肿瘤富集的MRI造影剂构建和肿瘤成像
- 批准号:21775160
- 项目类别:面上项目
- 资助金额:64.0万元
- 批准年份:2017
- 负责人:裴仁军
- 依托单位:
发展基于细胞相容的三维纳米界面的循环肿瘤细胞的超低损失捕获和释放及高纯度分离技术
- 批准号:21575154
- 项目类别:面上项目
- 资助金额:65.0万元
- 批准年份:2015
- 负责人:裴仁军
- 依托单位:
适配体分子探针的信号放大新策略研究
- 批准号:21275156
- 项目类别:面上项目
- 资助金额:78.0万元
- 批准年份:2012
- 负责人:裴仁军
- 依托单位:
国内基金
海外基金















{{item.name}}会员


