课题基金基金详情
基于被动微波降尺度的中国千米级分辨率逐日卫星土壤水分产品估算方法研究
结题报告
批准号:
42001304
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
宋沛林
依托单位:
学科分类:
遥感科学
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
宋沛林
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
土壤水是维持地球生命的重要自然资源,准确获取土壤含水量变化信息对于维持地球生态系统平衡具有十分重要的意义。目前在1km、逐日的高时空分辨率尺度上,遥感技术还难以获得对任意大范围区域实现稳定全覆盖的土壤水分产品。本研究目标即以中国为研究区,以融合光学遥感数据源的被动微波土壤水分降尺度技术为基础,研发中国首套1km分辨率逐日时空全覆盖遥感地表土壤水分产品。针对降尺度所需的光学(热红外)LST在多云时易产生缺失像元的问题,研究将改进现有的LST时空融合插补方法并得到空间全覆盖的热红外LST。之后,将以地面大田蒸发试验为基础,构建用于估算传统土壤水分降尺度方法的适用边界阈值的数学模型;对于土壤水分含量高于边界阈值的极湿地表,将通过引入机器学习方法改进传统降尺度模型,从而建立对全湿度范围适用的高时空分辨率土壤水分估算方法体系。估算结果将与不同站点观测数据进行对比验证,最终产品将在公共数据平台发布。
英文摘要
Soil moisture is an important natural resource for the existences of earth lives. Accurate estimation of land surface soil moisture is of great significance on maintaining the global ecological system balance. Currently, however, it is still difficult to obtain stable and full-covered soil moisture products with high spatio-temporal resolutions like 1 km on a daily basis when applying satellite remote sensing techniques in an arbitrary large-scale region. On this premise, this study will take the entire China as study region, and develop a novel methodology framework for generating the first set of full-cover surface soil moisture product all over China at 1 km on a daily basis, based on the passive microwave soil moisture downscaling technique through fusing optical data sources. Since one of the primary optical data (including "thermal infrared band" here) sources, i.e. land surface temperature (LST), can suffer from pixel loss easily over cloudy areas, we will firstly build a model to improve traditional LST interpolation methodology, through which a full-covered daily LST dataset at 1 km will be generated. In the next step, we will conduct a series of field-scale experiments for simulating the soil evaporation process. Through the experiments, we aim to develop a mathematical model which can well estimate the boundary soil moisture threshold suitable to traditional soil moisture downscaling methods. And we will introduce several machine-learning-based models to improve the traditional downscaling methods when it is under an extremely wet surface with soil moisture values higher than the aforementioned boundary threshold. In this way, we propose to establish an integrated methodology framework that is suitable to a much more complete variation range of soil moisture values. Model estimates will be evaluated against in-situ soil moisture observations and the final soil moisture product will be published in an authoritative public data plateform.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:https://doi.org/10.1016/j.jag.2024.103703
发表时间:2024
期刊:International Journal of Applied Earth Observations and Geoinformation
影响因子:--
作者:Peilin Song;Xiaojie Li;Zonghan Ma;Shengli Wu
通讯作者:Shengli Wu
DOI:https://doi.org/10.1016/j.rse.2021.112626
发表时间:2021
期刊:Remote Sensing of Environment
影响因子:--
作者:Peilin Song;Yongqiang Zhang
通讯作者:Yongqiang Zhang
DOI:https://doi.org/10.1016/j.jhydrol.2024.130814
发表时间:2024
期刊:Journal of Hydrology
影响因子:6.4
作者:Jiao Wang;Yongqiang Zhang;Peilin Song;Jing Tian
通讯作者:Jing Tian
DOI:https://doi.org/10.1029/2020GL091459
发表时间:2021
期刊:Geophysical Research Letters
影响因子:--
作者:Song Peilin;Zhang Yongqiang
通讯作者:Zhang Yongqiang
DOI:https://doi.org/10.1016/j.rse.2023.113899
发表时间:2023
期刊:Remote Sensing of Environment
影响因子:--
作者:Jingyao Zheng;Tianjie Zhao;Haishen Lv;Defu Zou;Nemesio Rodriguez-Fernandez;Arnaud Mialon;Philippe Richaume;Jianshe Xiao;Jun Ma;Lei Fan;Peilin Song;Yonghua Zhu;Rui Li;Panpan Yao;Qingqing Yang;Shaojie Du;Zhen Wang;Zhiqing Peng;Yuyang Xiong;Zanpin Xing;Lin Z
通讯作者:Lin Z
基于多源极轨和静止卫星数据融合的逐小时全天候地表土壤水分估算方法
  • 批准号:
    42371330
  • 项目类别:
    面上项目
  • 资助金额:
    46万元
  • 批准年份:
    2023
  • 负责人:
    宋沛林
  • 依托单位:
国内基金
海外基金