基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理

批准号:
62003314
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
沈剑
依托单位:
学科分类:
机器人学与智能系统
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
沈剑
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
智能弹药编队在协同化作战体系中具有潜在应用前景。对于领从架构编队,领弹失效后编队控制缺乏鲁棒性是限制其发展的瓶颈之一。本项目聚焦于研究领弹失效后的智能弹药编队协同控制问题,首先针对智能弹药编队协同控制过程具有马尔科夫性质的特点,通过Q-learning算法短时在线学习获取编队协同控制序贯决策;其次利用小脑模型关节控制器神经网络泛化加速编队执行动作值函数迭代,并根据经验共享原则在编队内部适时共享最优“状态—动作”对,以提高算法收敛速度;最后在此基础上,考虑领弹失效的情况,从弹导引信息获取来源由领弹转换为从弹低成本制导系统,序贯决策先验知识结合从弹短时在线学习构成从弹执行动作优选机制,实现智能弹药编队在状态环境改变后的协同控制。本项目研究旨在提升智能弹药编队的战场环境自适应能力和控制鲁棒性,探明编队最优执行动作序贯决策短时在线生成机理,为基于领弹失效考量的领从架构编队协同控制研究提供理论支撑。
英文摘要
Intelligent ammunition formation has potential application prospect in collaborative combat system. The lack of robustness for formation control is one of the drawbacks restricting the development of formation control after the failure of leader. This project focuses on the collaborative control of intelligent ammunition formation after the failure of leader. Firstly, in view of the markov nature of the collaborative control process of intelligent ammunition formation, the sequential decision of cooperative control of intelligent ammunition formation is obtained by Q-learning algorithm through short-term online learning. Secondly, the neural network of the cerebellar model articulation controller is used to accelerate the iteration of the action value function of the formation, and the optimal "state-action" pairs are timely shared in the formation according to the experience sharing principle, so as to improve the convergence speed of the algorithm. Finally, considering the failure of formation leader, the source of followers guidance information is converted from leader to followers low-cost guidance system. And the sequential decision-making prior knowledge combined with the followers short-term online learning constitutes the optimal choosing mechanism of followers’ action, in order to realize the cooperative control of intelligent ammunition formation after the state environment is changed. The purpose of this project is to improve the adaptive ability and control robustness of intelligent ammunition formation in battlefield environment, and to explore the short-term online generation mechanism of sequential decision-making of optimal execution of formation, so as to provide theoretical support for the research on cooperative control of formation based on the failure consideration of leader.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
The Motion Controller Based on Neural Network S-Plane Model for Fixed-Wing UAVs
基于神经网络S平面模型的固定翼无人机运动控制器
DOI:10.1109/access.2021.3093768
发表时间:2021
期刊:IEEE Access
影响因子:3.9
作者:Chen Pengyun;Zhang Guobing;Guan Tong;Yuan Meini;Shen Jian
通讯作者:Shen Jian
DOI:10.3964/j.issn.1000-0593(2022)08-2631-06
发表时间:2022
期刊:光谱学与光谱分析
影响因子:--
作者:张江;崔俊杰;郑长松;刘勇;刘亚军;沈剑
通讯作者:沈剑
Typical Fault Estimation and Dynamic Analysis of a Leader-Follower Unmanned Aerial Vehicle Formation
主从无人机编队典型故障估计与动态分析
DOI:10.1155/2021/6656422
发表时间:2021-03
期刊:International Journal of Aerospace Engineering
影响因子:1.4
作者:Shen Jian;Zhu Qingyu;Wang Xiaoguang;Chen Pengyun
通讯作者:Chen Pengyun
DOI:--
发表时间:2023
期刊:弹箭与制导学报
影响因子:--
作者:张搏睿;刘帅;唐宏;张本康;闫祁晨;沈剑
通讯作者:沈剑
DOI:10.1155/2022/2021693
发表时间:2022-06
期刊:International Journal of Aerospace Engineering
影响因子:1.4
作者:Jian Shen;Benrong Zhang;Qingyu Zhu;Pengyun Chen
通讯作者:Jian Shen;Benrong Zhang;Qingyu Zhu;Pengyun Chen
国内基金
海外基金
