Fold条件下奇异向量场的快慢动力学行为及其机理研究
结题报告
批准号:
12002299
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
吕伟鹏
依托单位:
学科分类:
非线性振动及其控制
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
吕伟鹏
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
快慢尺度下的奇异向量场具有复杂的动力学行为,揭示其复杂簇发现象的产生机制对于电子电路和大型机械转子系统等工程领域具有一定的应用价值。本项目拟研究Fold条件下奇异向量场的簇发行为及其诱发机制。首先,计算实际系统在Fold条件下规范型向量场的显式表达,考察参数变化对奇异向量场动力学特性的影响,建立参数与向量场动力学特性之间的对应关系;其次,分析不同形式周期激励作用下奇异向量场在不同分岔模式之间的转换行为,重点研究其在快慢转迁时的高余维分岔机理,探讨系统通往复杂振荡的演化过程以及复杂运动的特点;最后,构建LCR振荡电路,研究实验电路的准确性和有效性的同时验证理论分析的结果和数值模拟的动力学现象。本项目对于深入理解各种新簇发现象的本质具有科学意义,为避免在实际应用中发生此类现象提供理论依据和技术支撑。
英文摘要
The singular vector field on the fast-slow scale has complex dynamic behaviors. Revealing the mechanism of the complex bursting phenomenons has certain application value in engineering fields such as electronic circuits and large mechanical rotor systems. This project intends to focus on studying the bursting oscillations behaviors and the inducing mechanism of fast-slow singular vector field under compound fold conditons. Firstly, we will calculate the explicit expression of vector field of the engineering system under fold condition, and investigate the dynamic characteristics of the singular vector field via multi-parameter changes. In particular, this project will establish the corresponding relationship between the parameters and the dynamic characteristics of the vector field. Afterward, through different forms of periodic excitation, we will analyze the transformation behaviors of singular vector field between various modes of bifurcation. This project focus on studying the mechanism of high codimensional bifurcation in fast and slow transition, and investigating the evolution of the system to complex oscillation and the characteristics of complex motion. Finally, the results of theoretical analysis and numerical simulation will be verified via taking the LCR oscillation circuit as the experimental object. This project is of scientific significance for the in-depth understanding the essence of various new bursting phenomenas and provides theoretical basis and technical support for the avoidance of such phenomenas in practical engineering applications.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1088/1402-4896/acfce1
发表时间:2023-09
期刊:Physica Scripta
影响因子:2.9
作者:Weipeng Lyu;Shaolong Li;Juanjuan Huang;Qinsheng Bi
通讯作者:Weipeng Lyu;Shaolong Li;Juanjuan Huang;Qinsheng Bi
DOI:10.1007/s11071-022-08020-2
发表时间:2022-10
期刊:Nonlinear Dynamics
影响因子:5.6
作者:Weipeng Lyu;Lu Zhang;Haibo Jiang;Qinsheng Bi
通讯作者:Weipeng Lyu;Lu Zhang;Haibo Jiang;Qinsheng Bi
DOI:10.3390/math10234606
发表时间:2022-12
期刊:Mathematics
影响因子:2.4
作者:Shaolong Li;Weipeng Lv;Zhenyang Chen;Miao Xue;Qinsheng Bi
通讯作者:Shaolong Li;Weipeng Lv;Zhenyang Chen;Miao Xue;Qinsheng Bi
DOI:10.3390/math11112486
发表时间:2023-05
期刊:Mathematics
影响因子:2.4
作者:Weipeng Lyu;Shaolong Li;Zhenyang Chen;Qinsheng Bi
通讯作者:Weipeng Lyu;Shaolong Li;Zhenyang Chen;Qinsheng Bi
DOI:10.1007/s12043-022-02500-1
发表时间:2023-01
期刊:Pramana
影响因子:--
作者:Shaolong Li;Hongfang Han;Rui Qu;Weipeng Lv;Qinsheng Bi
通讯作者:Shaolong Li;Hongfang Han;Rui Qu;Weipeng Lv;Qinsheng Bi
国内基金
海外基金