三类空间填充设计的构造与分析研究

批准号:
12001036
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
姜博川
依托单位:
学科分类:
数据采样理论与方法
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
姜博川
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
空间填充设计在计算机试验中应用十分广泛。本项目研究三类空间填充设计的构造理论和数据分析方法,研究内容包括:(1)当需要用尽可能少的试验研究较多的潜在定量因子时,研究兼具低维投影均匀性和整体均匀性的超饱和GMA设计的构造理论,探索这些设计在变量筛选和模型预测方面的应用;(2)研究各类非正规设计中任意三列构成强度为3的正交表的充要条件,并基于这些非正规设计构造参数更灵活、列数更多的强正交表;(3)研究定性因子为各类混水平情况下的边缘耦合设计的结构性质和构造理论,探索这些设计在同时含有定量因子和混水平定性因子的计算机试验中的应用。本项目的研究内容是基于实际问题的需要和当前国际前沿动态提出的。研究成果将包括具有优良性质的设计表和包含程序源代码的应用案例,以供实际使用。
英文摘要
Space-filling designs are widely used in computer experiments. This project aims to study the constructions and analysis of three types of space-filling designs. The contents of the study include: (1) when a lot of latent quantitative factors are investigated with as few runs as possible, study the construction methods of supersaturated GMA designs with both low-dimensional projection uniformity and overall uniformity, and explore the applications of these designs in factor screening and model prediction; (2) for each type of nonregular designs, study the necessary and sufficient conditions for any three columns to form an orthogonal array of strength three, and construct new strong orthogonal arrays with more flexible parameters and more factors based on these nonregular designs; (3) study the properties and construction methods of the marginally coupled designs with mixed-level qualitative factors, and explore the applications of these designs in computer experiments with both quantitative factors and mixed-level qualitative factors. The contents of the project are proposed according to the demand of real-life cases and the most active topics in the current international studies. For the convenience of practical users, this project will provide a series of design tables with excellent properties and application cases with open source code.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
Strong orthogonal arrays of strength two-plus based on the Addelman-Kempthorne method
基于Addelman-Kempthorne方法的强度二加强正交阵
DOI:10.1016/j.spl.2021.109114
发表时间:2021
期刊:SStatistics & Probability Letters
影响因子:--
作者:Jiang Bochuan;Wang Zuzheng;Wang Yaping
通讯作者:Wang Yaping
DOI:10.1007/s00184-021-00850-1
发表时间:2021-11
期刊:Metrika
影响因子:0.7
作者:Jiang Bochuan;Wang Fei;Wang Yaping
通讯作者:Wang Yaping
Search for minimum aberration designs with uniformity
寻找具有均匀性的最小像差设计
DOI:10.1007/s10463-021-00796-1
发表时间:2021-04
期刊:Annals of Institute of Statistical Mathematics
影响因子:--
作者:Jiang Bochuan;Wang Yaping;Ai Mingyao
通讯作者:Ai Mingyao
国内基金
海外基金
