面向边缘计算的混合对数量化方法与专用加速器研究

批准号:
62004045
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
环宇翔
依托单位:
学科分类:
集成电路设计
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
环宇翔
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
随着物联网和人工智能飞速发展与融合,在边缘端实现智能处理,已成为“万物智联”的迫切需求,可极大地拓展物联网应用的边界,带动新一轮的信息技术变革。如何将人工智能算法轻量化并高效地部署在资源受限的边缘计算平台,仍是个亟待解决的关键科学问题。本项目着力于解决存储资源受限下的边缘智能处理问题,通过软硬件协同设计,目标实现存储能效>1.3TOPS/MByte的深度学习加速器。软件层面,本项目将研究一种基于混合对数(2和根号2)的训练后量化方法,不依赖校正数据集,在模型准确率损失<3%的条件下,实现>8倍的模型压缩;硬件层面,本项目将定制设计混合对数量化专用计算单元,研究有限状态机与序列映射表相结合的控制逻辑架构,并在FPGA平台完成专用加速器的设计和验证,通过对多层级缓存结构和数据流计算阵列的细粒度控制,优化平均数据复用率至10倍以上,提升阵列和片上存储利用率至>90%,降低控制逻辑开销至<1%。
英文摘要
With the rapid development and integration of the Internet of Things and Artificial Intelligence, intelligent processing at the edge has become an urgent need for "Internet of Intelligent Things”, which can greatly expand the boundaries of the Internet of Things applications and drive a new round of information technology revolution. How to efficiently deploy lightweight artificial intelligence algorithms on resource-constrained edge computing platforms is still a key scientific problem to be solved. This project focuses on solving the problem of edge intelligent processing under limited storage resources. Through the collaborative design of software and hardware, the goal of the project is to design a deep learning accelerator with storage energy efficiency > 1.3TOPS / MByte. At the software level, this project will study a post-training quantization method based on a mixed-base (2 and root number 2) logarithm, which does not rely on data set for calibration, and compress the model by > 8 times with the model accuracy loss of <3%; at the hardware level, this project will design a dedicated computing unit for mixed-base logarithmic quantization, study the control logic architecture based on the combination of finite state machine and sequence mapping table, and completes the design and verification of the dedicated accelerator on the FPGA platform. The fine-grained control of multi-level memory hierarchy and PE array optimizes the average data reuse rate to more than 10 times, improves on-chip storage and PE array utilization to > 90%, and reduces the control logic overhead to <1%.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
AIOC: An All-In-One-Card Hardware Design for Financial Market Trading System
AIOC:金融市场交易系统一体化卡硬件设计
DOI:10.1109/tcsii.2022.3167312
发表时间:2022
期刊:IEEE Transactions on Circuits and Systems II: Express Briefs
影响因子:--
作者:Boming Huang;Yuxiang Huan;Hao Jia;Chen Ding;Yulong Yan;Bin Huang;Lirong Zheng;Zhuo Zou
通讯作者:Zhuo Zou
DOI:10.1109/tcsi.2023.3315299
发表时间:2023-12
期刊:IEEE Transactions on Circuits and Systems I: Regular Papers
影响因子:--
作者:Jiawei Xu;Jiangshan Fan;Baolin Nan;Chen Ding;Li-Rong Zheng;Z. Zou;Y. Huan
通讯作者:Jiawei Xu;Jiangshan Fan;Baolin Nan;Chen Ding;Li-Rong Zheng;Z. Zou;Y. Huan
DOI:--
发表时间:2022
期刊:IEEE Transactions on Circuits and Systems I: Regular Papers
影响因子:--
作者:Chen Ding;Yuxiang Huan;Hao Jia;Yulong Yan;Fanxi Yang;Lizheng Liu;Meigen Shen;Zhuo Zou;Lirong Zheng
通讯作者:Lirong Zheng
DOI:--
发表时间:2021
期刊:IEEE Transactions on Circuits and Systems I: Regular Papers
影响因子:--
作者:Boming Huang;Yuxiang Huan;Haoming Chu;Jiawei Xu;Lirong Zheng;Zhuo Zou
通讯作者:Zhuo Zou
国内基金
海外基金
