分布式集群上基于海量图结构的高性能相似度检索
结题报告
批准号:
61972203
项目类别:
面上项目
资助金额:
60.0 万元
负责人:
俞唯仁
依托单位:
学科分类:
系统软件、数据库与工业软件
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
俞唯仁
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
基于图结构的相似度检索是当前图数据管理与信息检索的重要研究课题之一,它在推荐系统、金融安全、物联网、生物结构分析、知识图谱、文献计量学等各个领域已有广阔的应用前景与社会经济效益。本项目针对图数据具有海量规模、高度动态、不确定性的特点,重点研究如何在分布式集群上对海量图结构相似度进行快速、精确、并行的高性能检索,形成一套能效优化的时空复杂度低、规模可扩展性强、并发效率高的分布式处理框架与海量图相似度的高性能计算理论。拟解决的关键科学问题包括四个方面:1)分布式集群中海量规模的动态图自适应划分;2)集群节点上高效的动态索引与不同查询类型的并行检索模型;3)分布式海量图相似度检索的动态压缩技术与同步策略;4)不确定性海量动态图相似度的分布式检索与隐私保护。最后,通过研发分布式图相似度搜索引擎系统,来验证本项目中提出的理论与技术方法。本项目将为我国自主建立大数据的科学体系提供夯实的理论依据。
英文摘要
Similarity search based on graph topologies is one of the most important research topics in graph data management and information retrieval. It brings significant social and economic benefits, due to its wide spectrum of real emerging applications in, e.g., recommendation systems, financial security, Internet of Things, bioinformatics, knowledge graph discovery, and bibliometrics. To meet the challenges of large-scale, highly dynamical, and uncertain graph data, this project aims to develop a novel scheme for efficient graph-based similarity search over distributed systems in a fast, accurate, and parallel fashion, with the focus on taming its time and space complexities, increasing the scalability of search algorithms, and achieving the parallelism of similarity computations. There are four key scientific research problems to be addressed in this project, which encompasses: 1) adaptive partitioning of dynamical graphs over large-scale distributed systems; 2) efficient dynamic indexing on each cluster, and innovative similarity retrieval modeling to support various types of queries; 3) development of dynamical compression technologies and synchronization strategies for efficient graph-based similarity retrieval over scalable distributed systems; 4) efficient similarity search on uncertain dynamical graphs over distributed systems, with privacy-preserving techniques. Finally, a system prototype on distributed graph similarity search engine will be built to validate the effectiveness and superiority of the proposed theories, techniques and approaches. The success of this project will lay a solid theoretical foundation for the establishment of big-data information systems in our country.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1007/s10489-023-04974-x
发表时间:2023-09
期刊:Applied Intelligence
影响因子:5.3
作者:Xinxin Liu;Weiren Yu
通讯作者:Xinxin Liu;Weiren Yu
DOI:10.1109/tits.2023.3334558
发表时间:2024-05
期刊:IEEE Transactions on Intelligent Transportation Systems
影响因子:8.5
作者:Jinhui Ouyang;Mingxia Yu;Weiren Yu;Zhen Qin;Amelia C. Regan;Di Wu
通讯作者:Jinhui Ouyang;Mingxia Yu;Weiren Yu;Zhen Qin;Amelia C. Regan;Di Wu
DOI:10.1109/access.2020.2968982
发表时间:2020-01
期刊:IEEE Access
影响因子:3.9
作者:Lei Zhu;Jiayu Song;Weiren Yu;Chengyuan Zhang;Hao Yu;Zuping Zhang
通讯作者:Lei Zhu;Jiayu Song;Weiren Yu;Chengyuan Zhang;Hao Yu;Zuping Zhang
DOI:10.1007/s11280-021-00925-z
发表时间:2021-08
期刊:World Wide Web
影响因子:--
作者:Weiren Yu;S. Iranmanesh;Aparajita Haldar;Maoyin Zhang;H. Ferhatosmanoğlu
通讯作者:Weiren Yu;S. Iranmanesh;Aparajita Haldar;Maoyin Zhang;H. Ferhatosmanoğlu
DOI:--
发表时间:2023
期刊:Circuits, Systems, and Signal Processing
影响因子:--
作者:Dingli Hua;Yuanhong Ren;Xing Wang;Qiang Li;Weiren Yu
通讯作者:Weiren Yu
国内基金
海外基金