关于带边流形上的k-Yamabe问题的研究

批准号:
11301547
项目类别:
青年科学基金项目
资助金额:
22.0 万元
负责人:
贺妍
依托单位:
学科分类:
A0109.几何分析
结题年份:
2016
批准年份:
2013
项目状态:
已结题
项目参与者:
贺福利
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
本项目将深入研究带边流形上的k-Yamabe问题。该问题是微分几何中的一个热点,在本质上就是要解一个Neumann边值条件的完全非线性的偏微分方程。本项目将立足于已有的前期工作,将带边流形上的k-Yamabe问题分成如下四个问题展开研究:(1)给出带边流形上的k-Yamabe方程及相应的抛物方程的解的一阶、二阶估计。(2)寻找适当的泛函,使得带边流形上的k-Yamabe 方程为该泛函的Euler-lagrange方程。(3)确定抛物方程的初值,并得到解的存在性定理。(4)考察方程的变分结构与共形不变量的关系。我们认为这个问题解决的关键在于合适的估计定理的建立以及恰当的泛函的选择。同时我们也认识到该问题丰富的几何背景对于解方程是有着积极意义的。此外,共形类中方程的变分结构也有望揭示出流形本身的某些性质,这不能不说是个有趣的现象。
英文摘要
In this project, we shall research into the k-Yamabe problem on the manifolds with boundary which is a hot issue in differential geometry. The problem, in essence, is to solve a fully nonlinear Partial Differential Equation with Neumann boundary condition. We would like to develop our research work based on our preparatory work in the following four aspects. At first, the Estimation Theorems for the k-Yamabe Equation and the corresponding parabolic equation will be set up. Secondly, we shall look for a suitable functional such that the k-Yamabe Equation is its Euler-Lagrange Equation. Thirdly, we would like to determinate the initial values of the corresponding parabolic equation and get the Existence Theorem of the solutions. Fourthly, we shall consider the relationship between the variational structure and the conformal invariant. The key research problems of the project are the two previous ones. Although it is a fully nonlinear Partial Differential Equation, the geometry background would be quite helpful in solving it. Furthermore, it is interesting that the variational structure of the equation may imply some geometrical properties of the manifolds in the conformal class.
专著列表
科研奖励列表
会议论文列表
专利列表
国内基金
海外基金
