统一框架下的间歇过程故障诊断与控制研究
批准号:
61573050
项目类别:
面上项目
资助金额:
65.0 万元
负责人:
王晶
依托单位:
学科分类:
F0301.控制理论与技术
结题年份:
2019
批准年份:
2015
项目状态:
已结题
项目参与者:
周靖林、脱建勇、赵东、曲波、葛文双、张静静、刘黎明、闻攀、刘钟蔚
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
灵活的间歇生产是决定企业生存的重要因素,其在线监测、故障诊断及控制具有重要意义。项目以具有多时段、非高斯性、强非线性等特点的间歇过程为对象,重点开展统一框架下的非线性系统故障诊断与控制研究。与传统多变量统计监控的被动诊断不同,提出间歇过程的主动故障诊断思想,采用多模型结构设计合理辅助信号,充分激励隐藏的故障信息,提升检测精度;在此基础上构建主动故障诊断与控制器设计的统一架构,实现故障检测器和控制器的同步设计;从过程、质量变量同时出发,构建多方法融合的统计监控模型,确保对系统非高斯、非线性特性的提取,实现被动模式下的故障有效检测;在主、被动检测并行模式下构建微小故障检测双保险:以随机共振放大为指标设计主动诊断的测试信号,并利用结构信息构建残差发生器,区分噪声与微小故障信号。项目提出一套适合复杂非线性系统的主、被动故障诊断与监控的理论体系,其实施有助于提高我国间歇过程的生产力。
英文摘要
Flexible batch production is an important factor in determining the survival of enterprises, and the process monitoring of batch process is becoming urgent and necessary. This proposal focuses on the research of active fault diagnosis and control of batch process in an unified formulation. The active fault diagnosis of batch process, different from the traditional passive diagnosis multivariate statistical monitoring, is proposed, and a multimodel structure is used to design the reasonable auxiliary signal for fully stimulating the hidden fault information.Then an unified structure of fault diagnosis and controller design is built based on the active fault detection, and the fault detector and controller are synchronously desig; For the detection of obvious fault, fusion statistical method is given to construct monitoring model and extract infromation with Gaussian, non-Gaussian and nonlinear characteristics. Here process variables and quality variables are considered concurrently, which can be used to detect faults relative to production quality. Finally the parallel of active and passtive detection is adopted for incipient fault monitoring, in wihic the analytical models is fused with process data to discriminate noise from process data in passive detection mode,and the stochastic resonance criterion for auxiliary signal design is used to amplify the incipient fault in active detection mode. Implementation of all the proposed method will contribute in the statistical monitoring theory of batch process, and advance the automation level of domestic batch industry.
复杂工业过程的安全生产是决定企业生存的重要因素,其在线监测、故障诊断及控制具有重要意义。项目以具有多时段、非高斯性、强非线性等特点的复杂化工过程为对象,重点开展统一框架下的非线性系统故障诊断与控制研究。主要工作及创新如下:.(1)针对主动故障诊断问题,设计专有的故障诊断辅助信号,激励微小异常行为使其凸显;同时采用多胞形、椭圆等集元估计思想,采用移动窗滚动策略设计区间在线观测器和残差评价机制,提高微小在线故障检测与诊断的精度。.(2)针对主动故障诊断与控制的统一设计问题,提出了构建综合评价准则,实现二者的同步设计。特别分析各类微小故障存在位置和大小对系统的影响,基于YJBK参数化方法提出了一种基于AFD和PAFTC的系统统一框架。.(3)针对数据驱动的过程监测问题,在考虑过程变量和质量变量的前提下,采用全局多元统计与局部流行学习融合的技术,提取过程数据的多时段、非线性、非高斯、动态等特征,获取更好的故障诊断和监控效果。.(4)针对复杂系统的综合故障诊断及工业应用问题,集数据分析、模型库建立、故障及时诊断及可视化等算法为一体,提出混合型过程监控方法,并在聚酯生产流化床装置和方形管冷模成型加工工艺中进行应用。.基于本项目研究,提出了一套适合复杂非线性系统的主、被动故障诊断与监控的理论体系,其实施有助于提高我国流程工业的生产力。
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.13543/j.bhxbzr.2018.02.001
发表时间:2018
期刊:北京化工大学学报(自然科学版)
影响因子:--
作者:史雨茹;冷川江;常胜;王晶;王晓慧
通讯作者:王晓慧
DOI:--
发表时间:2018
期刊:控制理论与应用
影响因子:--
作者:谭程元;王晶
通讯作者:王晶
Process Monitoring Based on Multivariate Causality Analysis and Probability Inference
基于多元因果分析和概率推理的过程监控
DOI:10.1109/access.2018.2795535
发表时间:2018
期刊:IEEE Access
影响因子:3.9
作者:Chen Xiaolu;Wang Jing;Zhou Jinglin
通讯作者:Zhou Jinglin
Semisupervised Incremental Support Vector Machine Learning Based on Neighborhood Kernel Estimation
基于邻域核估计的半监督增量支持向量机学习
DOI:10.1109/tsmc.2017.2667703
发表时间:2017-02
期刊:IEEE Transactions on Systems Man Cybernetics-Systems
影响因子:8.7
作者:Wang Jing;Yang Daiwei;Jiang Wei;Zhou Jinglin
通讯作者:Zhou Jinglin
DOI:--
发表时间:2017
期刊:控制理论与应用
影响因子:--
作者:杨岱巍;王晶;周靖林;吴海燕;靳其兵
通讯作者:靳其兵
数据与模型融合驱动的间歇聚合过程学习控制
- 批准号:61174128
- 项目类别:面上项目
- 资助金额:59.0万元
- 批准年份:2011
- 负责人:王晶
- 依托单位:
快捷响应制造过程微观质量的建模、优化与控制
- 批准号:60704011
- 项目类别:青年科学基金项目
- 资助金额:20.0万元
- 批准年份:2007
- 负责人:王晶
- 依托单位:
国内基金
海外基金















{{item.name}}会员


