多源高通量肌群信息融合与生机接口研究
结题报告
批准号:
51905339
项目类别:
青年科学基金项目
资助金额:
25.0 万元
负责人:
郭伟超
依托单位:
学科分类:
E0501.机器人与机构学
结题年份:
2022
批准年份:
2019
项目状态:
已结题
项目参与者:
--
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
目前限制灵巧假肢推广普及的最主要的原因之一是生机接口的传输性能不足。表面肌电信号(sEMG)是目前研究最广泛的肌群控制接口信号源,在实验室条件下采用模式识别法可获得高达95%的解码准确率。然而由于患者残肢肌电信号源不足与肌电信号的时变特性及接触不稳定性,模式控制肌电接口目前尚未进入实际应用。项目针对肢残患者肌电信号源的限制,拟从多源高通测量仪器研制、解码模型构建和多源信号融合三方面入手,突破多源高通量肌群运动信息在体无创测量技术,解决生物信号传感器设计、电光声多源肌群信号测量问题,以获得高通量生物信息。在此基础上,提出基于单传感模块sEMG阵列的运动单元动作电位序列(MUAPt)反解方法,并根据人体生物信号的不同特征,构建电/光/声多源生物信号的联合解码模型。目标是提出单模块sEMG阵列MUAPt反解模型及多模态信号的解耦方法,为高传输率增强式生机接口研制及其灵巧假肢应用积累科学基础。
英文摘要
One of the main reasons that impede the popularization of current prosthetic hand is the inadequate transmission performance of bio-mechanical interface (BMI). Surface electromyography (sEMG) is the most widely used signal for BMI research. It is now accepted that myoelectric pattern recognition (PR) can yield 95% of classification accuracy in lab conditions. However, sEMG PR control has not been realized practical usage because of the sEMG signal source missing or degradation of amputation stump, time-shift characteristics and unreliable sensor-skin contact interface of sEMG. To overcome the inherent drawbacks of sEMG, the project is proposed to measure and fuse multi-sensor muscle activities from the modalities of electrophysiology, metabolic physiology and acoustics, representing as sEMG, near-infrared spectroscopy (NIRS) and mechanomyography (MMG), respectively. The research work will be focused on the following issues with the development of multi-sensor system, theoretical analysis and multi-sensor fusion: 1) the sensing element design and optimization of electrophysiology, photics and acoustics for multi-sensor system to acquire high-throughput biological information; 2) the decomposition of motor unit action potential trains (MUAPt) from single-node multi-pin sEMG signals as MUAPt contains more reliable and stable neural control information; 3) the fusion approach of multi-sensor information to built decoding model from biological signals to motion intentions. The goal of this project is to propose the methods of multi-sensor fusion with sEMG array, NIRS and MMG, especially the decomposition of single-node multi-pin sEMG signals into its MUAPt and the decoupling of multi-sensor muscle information. The outcomes of this project will provide scientific basis for the development of enhanced bio-mechanical interface with high transmission rate and dexterous prosthetic hands.
项目针对肢残患者肌电信号源的限制,从多源高通测量仪器研制、解码模型构建和多源信号融合三方面开展了研究。主要研究内容包括:1)多源高通量肌群信息在体测量方法与传感系统研制;2)基于单模块sEMG阵列的运动单元动作电位序列(MUAPt)反解;3)多模态生物信号解耦方法及联合解码模型;4)多源信号融合的生机接口鲁棒性研究。项目突破了多源高通量肌群运动信息在体无创测量技术,解决了生物信号传感器设计、电光声多源肌群信号测量问题,精准获取了高通量生物信息。在此基础上,提出了基于单传感模块sEMG阵列的MUAPt反解方法,并根据人体生物信号的不同特征,构建了电/光/声多源生物信号的联合解码模型,为高传输率增强式生机接口研制及其灵巧假肢应用积累了科学基础。研究成果在IEEE Transactions on Instrumentation and Measurement、IEEE Sensors Journal等重要学术期刊和国际会议发表本基金号标注论文9篇,其中SCI收录论文5篇,申请发明专利5项。
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:--
发表时间:2020
期刊:传感技术学报
影响因子:--
作者:吕鹏宇;郭伟超;盛鑫军;朱向阳
通讯作者:朱向阳
DOI:10.1007/s11431-022-2035-9
发表时间:2022-05
期刊:Science China Technological Sciences
影响因子:--
作者:Guo Weichao;Wang Mian;Sheng Xinjun;Zhu Xiangyang
通讯作者:Zhu Xiangyang
DOI:10.1109/tim.2023.3234092
发表时间:2023
期刊:IEEE Transactions on Instrumentation and Measurement
影响因子:5.6
作者:Weichao Guo;Yun Fang;X. Sheng;Xiangyang Zhu
通讯作者:Weichao Guo;Yun Fang;X. Sheng;Xiangyang Zhu
DOI:https://doi.org/10.1007/s11431-022-2035-9
发表时间:2022
期刊:Science China Technological Sciences
影响因子:--
作者:Guo Weichao;Wang Mian;Sheng Xinjun;Zhu Xiangyang
通讯作者:Zhu Xiangyang
Assessment of Muscle Fatigue Based on Motor Unit Firing, Muscular Vibration and Oxygenation via Hybrid Mini-Grid sEMG, MMG, and NIRS Sensing
通过混合迷你网格 sEMG、MMG 和 NIRS 传感,基于运动单位放电、肌肉振动和氧合来评估肌肉疲劳
DOI:10.1109/tim.2022.3198472
发表时间:2022
期刊:IEEE Transactions on Instrumentation and Measurement
影响因子:5.6
作者:Guo Weichao;Sheng Xinjun;Zhu Xiangyang
通讯作者:Zhu Xiangyang
面向上臂灵巧假肢自治的多模态感知与双向神经接口研究
  • 批准号:
    52375021
  • 项目类别:
    面上项目
  • 资助金额:
    50万元
  • 批准年份:
    2023
  • 负责人:
    郭伟超
  • 依托单位:
基于多模态感知的灵巧假肢人机共享控制方法研究
  • 批准号:
    n/a
  • 项目类别:
    省市级项目
  • 资助金额:
    0.0万元
  • 批准年份:
    2023
  • 负责人:
    郭伟超
  • 依托单位:
国内基金
海外基金