Wasserstein变分推理关键问题研究

批准号:
62006094
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
迟晋进
依托单位:
学科分类:
机器学习
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
迟晋进
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
贝叶斯模型的推理是贝叶斯方法的核心研究。最常用的一类推理方法是变分推理,它具有收敛速度快和易并行化等优势,但是基于KL散度的传统变分推理会出现低估方差等问题,严重影响推理性能。因此学者们致力于研究使用更优的度量标准构建目标函数,从本质上提高变分推理的近似性能。目前,基于Wasserstein(W)距离的W变分推理表现出良好的推理性能和鲁棒性,相比于KL散度,W距离具有捕捉分布空间几何信息和对称性等许多优势。但现有W变分推理方法尚存在诸多问题严重影响应用效果:缺少通用的易于优化的目标函数和高精度的优化算法,推理效率低等。对此,本项目拟展开如下研究:使用copula函数和神经网络等构建通用的可近似计算的目标函数;降低蒙特卡洛估计方差提高计算精度;使用mini-batch和并行计算等策略提高推理速度。最终提出通用性良好、高精度、快速的W变分推理方法,为实际应用中的贝叶斯模型提供更准确高效的推理。
英文摘要
The central research of Bayesian learning is approximating inference of Bayesian models. Variational inference (VI) is one of the most widely used approximating inference methods, which tends to converge faster and be easier-to-parallelize. However, traditional variational inference based on Kullback-Leibler (KL) divergence suffers from problems such as underestimating variances, resulting in bad performance. Therefore, researchers have paid more attention to use better divergence measures to construct objective functions so as to gain more accurate variational approximations. Wasserstein VI has recently used Wasserstein distance as a divergence measure to construct the objective function, which has better performance and robustness. In contrast to KL divergence, Wasserstein distance can capture the geometry of distributions and has the appealing property of symmetry, leading to the superior performance. Unfortunately, the existing Wasserstein VI methods suffer from three issues: lack of general and approximate objective functions, lack of accurate approximations, and slow optimization. These results make the Wasserstein VI methods unavailable in real-world applications. To alleviate these issues, this project aims at improve Wasserstein VI methods by the following researches: using copulas and neural networks to construct general and approximate objectives; reducing variances of Monte Claro estimates to make more accurate approximations; speeding up inference through mini-batch and parallel computing. Finally, this project proposes a general, accurate and fast Wasserstein VI methodology, which can provide an effective and efficient inference for Bayesian models in applications.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1016/j.knosys.2023.110513
发表时间:2023-03
期刊:Knowledge-Based Systems
影响因子:8.8
作者:Zhiyao Yang;Bing Wang;Ximing Li;Wenting Wang;Jihong Ouyang
通讯作者:Zhiyao Yang;Bing Wang;Ximing Li;Wenting Wang;Jihong Ouyang
DOI:--
发表时间:2023
期刊:Multimedia Tools and Applications
影响因子:--
作者:Jihong Ouyang;Dong Mao;Qingyi Meng
通讯作者:Qingyi Meng
DOI:10.1007/s10115-022-01705-5
发表时间:2022-07
期刊:Knowledge and Information Systems
影响因子:2.7
作者:Ximing Li;C. Li;Jinjin Chi;Jihong Ouyang
通讯作者:Ximing Li;C. Li;Jinjin Chi;Jihong Ouyang
DOI:10.1007/s10489-023-05018-0
发表时间:2023-10
期刊:Applied Intelligence
影响因子:5.3
作者:Jihong Ouyang;Chenyang Lu;Bing Wang;C. Li
通讯作者:Jihong Ouyang;Chenyang Lu;Bing Wang;C. Li
Fast copula variational inference
快速 copula 变分推理
DOI:10.1080/0952813x.2021.1871970
发表时间:2021-01
期刊:Journal of Experimental & Theoretical Artificial Intelligence
影响因子:2.2
作者:迟晋进;欧阳继红;张昂;王新华;李熙铭
通讯作者:李熙铭
国内基金
海外基金
