融合云数据中心与P2P网络的随机模型与博弈均衡问题的研究
批准号:
61973261
项目类别:
面上项目
资助金额:
62.0 万元
负责人:
马占友
依托单位:
学科分类:
系统工程理论与技术
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
马占友
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
近年来,网络数据呈爆炸性增长态势,云模式下的数据中心及P2P网络的集成架构成为研究热点。本项目致力于融合云数据中心与P2P网络的资源部署、副本管理及纳什均衡等问题的策略研究、模型建立及系统优化。针对数据中心层提出基于完全/智能polling的资源部署策略;针对P2P层提出副本立即/延迟修复策略及节点休眠策略;针对用户请求层提出综合考虑传输收益和等待成本的纳什均衡策略。建立请求队列数可变的空竭/非空竭服务统计轮询随机模型,进行数据中心层资源部署方案的评估与优化。针对P2P层的副本修复及节点休眠策略,建立服务台数可变的休假随机模型,合理设置副本修复阈值及休假长度等参数,优化P2P层网络服务。结合随机模型理论与博弈论,进行博弈均衡分析,研究服务节点的激励机制及请求节点的收费机制,实现系统的社会最优。项目研究成果既可以优化集成架构的性能,又可以扩展随机理论的研究范畴,具有重要的理论和应用价值。
英文摘要
In recent years, data in computer networks has exploded, integrated architecture of data center and P2P network based on cloud mode becomes the hot topic of research. In this context, we devote to the issues of strategy design, model building and system optimization in network resource management, including resource deployment, duplicate management and Nash equilibrium. Resource deployment strategies with fully polling and intelligent polling are proposed in data center layer. For P2P layer, immediate and delayed duplicate repair strategies, as well as energy conservation strategies are given. By taking into account the transmission reward and the waiting cost in user request layer, Nash equilibrium strategies are presented. In order to estimate and optimize the resource deployment strategy in data center layer, exhaustive and non-exhaustive statistically polling stochastic models with random queues are built. According to the working principles of duplicate repair and node energy conservation, stochastic models with vacation and random servers are established, then the duplicate repair threshold and sleeping length are set optimally to improve the service quality of P2P networks. Combining stochastic model theory and game theory, the game equilibrium strategy is analyzed, the incentive mechanism for the serving nodes and the pricing policy for the request nodes are studied, then the system is optimized socially. The achievement of this project can be used to optimize the system performance of the integrated framework, as well as extend the research scope of stochastic model. It is of importance in theory and practice.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.34768/amcs-2022-0010
发表时间:2022-03
期刊:International Journal of Applied Mathematics and Computer Science
影响因子:1.9
作者:Huan Zheng;Shunfu Jin
通讯作者:Huan Zheng;Shunfu Jin
Performance evaluation and optimization of a task offloading strategy on the mobile edge computing with edge heterogeneity
边缘异构移动边缘计算任务卸载策略的性能评估与优化
DOI:10.1007/s11227-021-03781-w
发表时间:2021-04
期刊:Journal of Supercomputing
影响因子:3.3
作者:Li Wei;Jin Shunfu
通讯作者:Jin Shunfu
DOI:10.12305/j.issn.1001-506x.2023.01.32
发表时间:2023
期刊:系统工程与电子技术
影响因子:--
作者:张长振;马占友;刘琳;陈利
通讯作者:陈利
Pricing Policy for a Dynamic Spectrum Allocation Scheme with Batch Requests and Impatient Packets in Cognitive Radio Networks
认知无线电网络中具有批量请求和不耐烦数据包的动态频谱分配方案的定价策略
DOI:10.1007/s11518-022-5521-0
发表时间:2022-03
期刊:Journal of Systems Science and Systems Engineering
影响因子:1.2
作者:Wu Haixing;Jin Shunfu;Yue Wuyi
通讯作者:Yue Wuyi
Nash Equilibrium and Social Optimization of a Task Offloading Strategy with Real-Time Virtual Machine Repair in an Edge Computing System
边缘计算系统中具有实时虚拟机修复的任务卸载策略的纳什均衡和社会优化
DOI:10.1007/s10586-022-03603-5
发表时间:2022-05
期刊:Cluster Computing
影响因子:--
作者:Xiaobing Guo;Zhili Du;Shunfu Jin
通讯作者:Shunfu Jin
国内基金
海外基金















{{item.name}}会员


