基于Big Code深度背景增强的Android应用代码反混淆研究

批准号:
61972290
项目类别:
面上项目
资助金额:
60.0 万元
负责人:
刘进
依托单位:
学科分类:
软件理论、软件工程与服务
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
刘进
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
项目以Big Code背景信息增强作为基本方法、以迁移代码背景语义信息到深度学习反混淆模型为线索,研究海量代码深度背景增强的Android应用代码反混淆,以提升恶意代码检测效率。研究包括基于海量代码迁移分析的混淆代码背景信息增强方法、基于海量代码分析多任务的代码语义模型、海量代码背景信息深度增强的反混淆技术、优化、质量评估、工具和验证。研究贡献在于较早利用涌现的海量代码资源和迅猛发展的深度学习代码分析技术,用于新型代码反混淆研究方法创新和关键技术突破,为发展软件新型技术作出示范;关键技术运用多任务语义建模和背景信息深度增强反混淆,体现了海量代码环境下反混淆研究的独特技术特征。研究意义在于从科技角度尝试回答,能否综合利用现有海量代码资源、代码语义分析和深度学习技术,提供不同于传统的方法和技术手段克服反混淆的内在复杂性。考虑到混淆导致的移动应用高安全风险现状,研究意义明显且具有广阔的推广前景。
英文摘要
Effective code deobfuscation can vigorously promotes malicious code detection for android applications. Therefore our application tends to investigate deobfuscating android applications through Big Code augmented deep learning. The basic method is to take advantage of Android Application Big Code to augmenting the background information of obfuscated codes. It tracks down transfering background semantics of codes to the deep learining enabled deobfuscating model. The investigation includes the method of augmenting the background information of obfuscated codes with Big Code transfering analysis, Big Code multiple tasks of code anlysis driving code semantic model, deobfuscating techniques of Android applications through Big Code Augmented Deep Learning, the optimization schemes, the estimation methods, software tools, and the proof scheme. The contributions of this application will includes that: 1) We early takes advantage of the massive code resources and deep learning enabled code analysis techniques that develop rapidly to innovate new method and breaking through key technologies of deobfuscating codes. This give a good example for innovating software techniques. 2) The implementation of modeling code semantics with Big Code multiple tasks of code anlysis and deobfuscating Android applications through Big Code augmented deep learning, embodies the unique technique characteristics of deobfuscating in Big Code. The scientific interest of the application lies in that we tend to answer the question whether we can comprehensively apply Big Code resources and current techniques such as code semantic analysis, deep learning driven code analysisf to deobfuscate android application codes efficiently in a nontraditional way, by overcoming the interior complexity of deobfuscating codes. Considering the high security risk of android applications caused by code obfuscation, our research has clear academic significance and great practical significance.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1109/tcds.2022.3198272
发表时间:2023-09
期刊:IEEE Transactions on Cognitive and Developmental Systems
影响因子:5
作者:Geng Zhang;Jin Liu;Guangyou Zhou;Zhiwen Xie;Xiao Yu;Xiaohui Cui
通讯作者:Geng Zhang;Jin Liu;Guangyou Zhou;Zhiwen Xie;Xiao Yu;Xiaohui Cui
Hierarchical Neighbor Propagation With Bidirectional Graph Attention Network for Relation Prediction
DOI:10.1109/taslp.2021.3079812
发表时间:2021
期刊:IEEE/ACM Transactions on Audio, Speech, and Language Processing
影响因子:--
作者:Zhiwen Xie;Runjie Zhu;Jin Liu;Guangyou Zhou;J. Huang
通讯作者:Zhiwen Xie;Runjie Zhu;Jin Liu;Guangyou Zhou;J. Huang
DOI:10.1016/j.jss.2022.111219
发表时间:2022-01
期刊:J. Syst. Softw.
影响因子:--
作者:Jiaojiao Yu;Kunsong Zhao;Jin Liu;Xiao Liu;Zhou Xu;Xin Wang
通讯作者:Jiaojiao Yu;Kunsong Zhao;Jin Liu;Xiao Liu;Zhou Xu;Xin Wang
DOI:https://doi.org/10.1016/j.inffus.2023.102058
发表时间:2023
期刊:Information Fusion
影响因子:18.6
作者:Juncai Guo;Jin Liu;Xiao Liu;Li Li
通讯作者:Li Li
Runtime Verification of Business Cloud Workflow Temporal Conformance
业务云工作流时间一致性的运行时验证
DOI:10.1109/tsc.2019.2962666
发表时间:2022-03
期刊:IEEE Transactions on Services Computing
影响因子:8.1
作者:罗浩宇;刘晓;刘进;杨耘;John C. Grundy
通讯作者:John C. Grundy
基于隐性情境挖掘的API微环境组合服务方法和关键技术研究
- 批准号:61572374
- 项目类别:面上项目
- 资助金额:63.0万元
- 批准年份:2015
- 负责人:刘进
- 依托单位:
球面全方位目标测量及跟踪理论
- 批准号:41271454
- 项目类别:面上项目
- 资助金额:75.0万元
- 批准年份:2012
- 负责人:刘进
- 依托单位:
基于平行执行的网络化软件动态建模方法和关键技术研究
- 批准号:61070013
- 项目类别:面上项目
- 资助金额:30.0万元
- 批准年份:2010
- 负责人:刘进
- 依托单位:
基于新型不变矩的目标识别可信度研究
- 批准号:60705009
- 项目类别:青年科学基金项目
- 资助金额:20.0万元
- 批准年份:2007
- 负责人:刘进
- 依托单位:
国内基金
海外基金
