低剂量CT图像伪影抑制中循环生成对抗训练模型研究
批准号:
62001321
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
上官宏
依托单位:
学科分类:
探测与成像
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
上官宏
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
深度学习应用于低剂量CT图像的伪影和噪声抑制已取得一定成果,成为该领域新的研究热点。然而,由于成对训练数据不足造成网络训练不充分,制约了伪影和噪声的抑制效果。本项目提出采用半监督学习机制训练生成对抗网络,用真实成对数据约束生成数据的质量,两种数据在判决器中形成循环对抗训练模式,通过交互式学习提高网络对伪影和噪声的抑制效果。配合训练模式的改变,提出对图像不同语义信息在变换域分通道训练的网络结构,并通过设计多描述损失函数约束训练过程,从而提高网络对不同语义信息的处理能力。此外,通过引入注意力子网和噪声水平估计子网,分通道有针对性地学习不同语义信息的增强特征,来克服网络对噪声和伪影特征表达能力不足的问题。本项目致力于探索在成对CT图像有限的约束条件下生成对抗网络的训练机制和模型结构设计,该问题具有重要的学术研究价值,研究成果可用于提高低剂量CT的成像质量,具有潜在的临床应用价值。
英文摘要
The application of deep learning to low-dose CT images’ artifacts and noise suppression has achieved certain results and become a new research hotspot in this field. However, network training is insufficient due to the lack of paired training data, which greatly restricts the effectiveness of artifacts and noise suppression. This project proposes a semi-supervised learning mechanism to train generative adversarial network, in which the real paired data is used to supervise the quality of the synthesized data. The two kinds of data form a circular adversarial training mode in the discriminator, thus improving the network’s effectiveness of artifacts and noise suppression through interactive learning. Cooperated with the transformation of the training model, this study proposes a new network structure to train different semantic information in the different sub-channels in transform domain, and designs multiple description loss functions to constrain the training process, thereby improving the sensitivity of the network to different semantic information. In addition, by introducing attention subnets and noise level estimation subnets, learning the enhanced features of different semantic information in different channels in a targeted way to improve the network's insufficient ability to express noise and artifact features. This project is devoted to exploring the training mechanism and model structure design of generative adversarial networks under the constraint that there are few pairs of CT images, which has important academic research value. The research results can be used to improve the imaging quality of low-dose CT, which have potential clinical application value.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1016/j.image.2023.117009
发表时间:2023-07
期刊:Signal Process. Image Commun.
影响因子:--
作者:Zefang Han;Shangguan Hong;Xiong Zhang;Xueying Cui;Y. Wang
通讯作者:Zefang Han;Shangguan Hong;Xiong Zhang;Xueying Cui;Y. Wang
DOI:10.1109/jbhi.2022.3155788
发表时间:2022-07-01
期刊:IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
影响因子:7.7
作者:Han, Zefang;Shangguan, Hong;Ren, Huiying
通讯作者:Ren, Huiying
DOI:10.3233/xst-221149
发表时间:2022-06
期刊:Journal of X-ray science and technology
影响因子:3
作者:Xueying Cui;Yingting Guo;Xiong Zhong;Shangguan Hong;B. Liu;Anhong Wang
通讯作者:Xueying Cui;Yingting Guo;Xiong Zhong;Shangguan Hong;B. Liu;Anhong Wang
DOI:10.1007/s11760-023-02560-9
发表时间:2023-05
期刊:Signal, Image and Video Processing
影响因子:--
作者:Xueying Cui;Yingting Guo;Wenqiang Hao;H. Shangguan;Xiong Zhang;B. Liu;Anhong Wang;Lizhong Jin
通讯作者:Xueying Cui;Yingting Guo;Wenqiang Hao;H. Shangguan;Xiong Zhang;B. Liu;Anhong Wang;Lizhong Jin
DOI:10.11772/j.issn.1001-9081.2021040700
发表时间:2022
期刊:计算机应用
影响因子:--
作者:韩泽芳;张雄;上官宏;韩兴隆;韩静;奉刚;崔学英
通讯作者:崔学英
国内基金
海外基金















{{item.name}}会员


