基于数据驱动的海上双馈风力发电机机电多故障集成多小波定量诊断方法研究
结题报告
批准号:
51965013
项目类别:
地区科学基金项目
资助金额:
40.0 万元
负责人:
何水龙
依托单位:
学科分类:
机械动力学
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
何水龙
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
项目从海上风电系统可监测、可预测和可维护等需求出发,针对海洋复杂环境下双馈式风力发电机系统的机电多故障特征提取与定量识别难题,从机理分析入手,研究海洋环境下双馈电机轴承锈蚀及机电多故障失效机理和动态响应特性,明确多故障特征与信号征兆的映射关系,为特征提取奠定理论基础;研究广义两尺度变换和多小波提升策略,提出集成多小波构造新方法,构建高自由度、多参数调控的大差异柔性基函数,为信息特征分离提供方法;基于智能优化方法,研究集成多小波子空间信息自适应匹配准则,实现多基函数与发电机机电多故障特征的高效自适应匹配,增强特征提取能力;提出自适应性集成多小波的最优分解策略,建立无量纲测度指标与故障等级判断标准,实现机电多故障的定量诊断。通过实验研究和工程应用检验和修正项目的理论方法。研究成果为海上双馈风力发电机故障预示与运行评估提供理论和技术支持,提高发电系统服役性能,具有重要理论意义及应用价值。
英文摘要
According to the monitorable, predictable and maintainable requirement of offshore wind-driven doubly-fed generator, this program aims at studying the problem of multi-fault feature extraction and quantitative identification of the doubly-fed generator, starting from the research of mechanism analysis, the failure mechanism and dynamic response characteristics of bearing corrosion and the electromechanical coupled multi-fault of wind-driven doubly-fed generator in marine environment are researched to reveal the relation between multi faults and the signal characters, which lays the theoretical foundation for multi-fault feature extraction and separation; An new ensemble multiwavelet construction method based on the generalized two scale transform and multiwavelet lifting scheme theory is proposed to build a discrepant flexible multiwavelet basic function library with the large freedom and multi-parameters, which provides technical means for separation of multiple features; Based on the optimization algorithm, the adaptive ensemble multiwavelet subspace information matching criterion is proposed to study the dimensionless measure optimization index, adaptive optimal construction is obtained, which enhance the ability of multiwavelet to match the multi-fault features, and it is benefit to realize the extraction features. Furthermore, the optimal decomposition strategy of adaptive ensemble multiwavelet is proposed, and the dimensionless measure index and fault grade judgment standard are built, which can realize the quantitative diagnosis of electromechanical multi-faults potentially. Through the experimental research and engineering application of the theoretical method of testing and correction, the research achievement will provide theoretical and technical support to the fault prediction and operational safety evaluation of the offshore wind power system, which will effectively improve the service performance of the generator, which is of high valuable for both academic sense and applied meaning.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
Triplet metric driven multi-head GNN augmented with decoupling adversarial learning for intelligent fault diagnosis of machines under varying working condition
三元组度量驱动的多头 GNN 增强解耦对抗学习,用于不同工作条件下机器的智能故障诊断
DOI:10.1016/j.jmsy.2021.10.014
发表时间:2022
期刊:Journal of Manufacturing Systems
影响因子:12.1
作者:Kaiyu Zhang;Jinglong Chen;Shuilong He;Fudong Li;Yong Feng;Zitong Zhou
通讯作者:Zitong Zhou
DOI:--
发表时间:2023
期刊:轴承
影响因子:--
作者:朱良玉;陶林;胡超凡;何水龙
通讯作者:何水龙
DOI:10.1155/2021/9927348
发表时间:2021-11
期刊:J. Sensors
影响因子:--
作者:Shuilong He;Yongliang Wang;Yuye Chen;Fei Xiao;Jucai Deng;Enyong Xu
通讯作者:Shuilong He;Yongliang Wang;Yuye Chen;Fei Xiao;Jucai Deng;Enyong Xu
Intelligent fault diagnosis under small sample size conditions via Bidirectional InfoMax GAN with unsupervised representation learning
通过双向 InfoMax GAN 和无监督表示学习在小样本量条件下进行智能故障诊断
DOI:10.1016/j.knosys.2021.107488
发表时间:2021-11
期刊:KNOWLEDGE-BASED SYSTEMS
影响因子:8.8
作者:Liu Shen;Chen Jinglong;He Shuilong;Xu Enyong;Lv Haixin;Zhou Zitong
通讯作者:Zhou Zitong
DOI:10.1016/j.isatra.2021.07.047
发表时间:2021-08
期刊:ISA transactions
影响因子:7.3
作者:Haixin Lv;Qian Liu;Jinglong Chen;Shuilong He;Enyong Xu;Tianci Zhang;Zitong Zhou
通讯作者:Haixin Lv;Qian Liu;Jinglong Chen;Shuilong He;Enyong Xu;Tianci Zhang;Zitong Zhou
国内基金
海外基金