非齐次Diophantine逼近的若干研究
结题报告
批准号:
10926160
项目类别:
数学天元基金项目
资助金额:
3.0 万元
负责人:
徐剑
依托单位:
学科分类:
A0204.几何测度论与分形
结题年份:
2010
批准年份:
2009
项目状态:
已结题
项目参与者:
--
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
Diophantine逼近是数论研究中的一个热门分支,而关于对Diophantine逼近理论中的非齐次Diophantine逼近问题的研究,无论是在理论基础上还是实际应用中都有极其重要的意义。该项目主要就非齐次Diophantine逼近上的度量性质和分形机构展开研究,主要探讨以下几类问题:1.可以很好逼近的点所组成的集合的Hausdorff维数;2.不可很好逼近的点所组成的集合的度量性质和分形结构;3.形式级数域上的非齐次Diophantine逼近的度量理论和分维理论。我们得到的结果将解决出现于分形几何与Diophantine逼近中的一大类交叉问题。
英文摘要
专著列表
科研奖励列表
会议论文列表
专利列表
自仿系统中的变尺度和收缩靶问题
  • 批准号:
    11571127
  • 项目类别:
    面上项目
  • 资助金额:
    45.0万元
  • 批准年份:
    2015
  • 负责人:
    徐剑
  • 依托单位:
Diophantine逼近和连分数的若干研究
  • 批准号:
    11101167
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    22.0万元
  • 批准年份:
    2011
  • 负责人:
    徐剑
  • 依托单位:
国内基金
海外基金