稀疏样本条件下的多维频谱占用状态预测方法研究
结题报告
批准号:
61301160
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
宋绯
学科分类:
F0102.信息系统与系统安全
结题年份:
2016
批准年份:
2013
项目状态:
已结题
项目参与者:
丁国如、陈瑾、徐以涛、姚俊楠、陈泱、阚常聚、冯烁、张林元、张玉立
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
获取多维频谱占用状态是实施机会频谱接入的前提,是解决频谱资源紧张,提升频谱利用率的基础。在实际系统中,由于受到硬件处理速度、网络部署代价等限制,获取全面的频谱占用状态十分困难,通过感知仅能获得稀疏的频谱数据样本。然而频谱数据具有时间、频率、空间各个维度上的相关性,频谱预测正是一种利用相关性实现由已知频谱数据样本推演未知频谱数据,由稀疏样本推演完整数据的方法。基于此,本课题以多维频谱占用状态为研究对象,以稀疏样本条件下多维频谱占用状态的获取为基本科学问题,提出多维频谱数据的跨维度相关性建模方法,为后续的联合预测提供模型基础;提出基于小样本学习理论的多维频谱数据滤波方法,降低异常数据引起的负面影响,提高频谱数据的可靠性;提出基于张量完成理论的多维频谱联合预测方法,实现稀疏样本条件下多维频谱联合预测性能的提升。本课题的研究成果将为解决"无线频谱资源紧张"这一重大现实需求提供理论支撑。
英文摘要
To obtain the multi-dimensional spectrum occupancy information is the precondition of successful opportunistic spectrum access and the cornerstone of solving the radio spectrum scarcity problem. In practical systems, due to limited hardware processing speed and high network deployment price, we can only obtain sparse spectrum measurement samples from spectrum sensing and it is difficult to obtain complete spectrum occupancy information. However, it is observed that one spectrum data presents correlations with other spectrum data in dimensions of time, frequency, and space. By exploiting these correlations, spectrum prediction is a promising method to infer unknown spectrum data from known spectrum samples, and infer the complete multi-dimensional spectrum occupancy information from sparse samples. Motivated by the observations above, this program investigates the issue of joint prediction of multi-dimensional spectrum occupancy with sparse samples. Firstly, we propose a cross-dimensional correlation modelling method for multi-dimensional spectrum occupancy, which serves as the base for the following work. Secondly, using small sample learning theory, we develop filtering algorithms of multi-dimensional spectrum data to decrease the negative effect of the abnormal data and improve the reliablity of the spectrum data. Most importantly, based on the recent advances in tensor completion theory, we develop joint prediction algorithms of multi-dimensional spectrum occupancy to improve the prediction precision. The achivements of this program will provide sound theoretical support for the urgent need to seek effective solutions for the radio spectrum scarcity problem.
频谱占用状态是实现动态频谱管理的基础。而在实际系统中,频谱数据往往存在多个维度上的相关性,与单维状态相比,多维频谱占用状态可以有效提升动态频谱利用率。此外,在频谱占用状态获取中,监测中心收集到的频谱数据具有一定的稀疏性,稀疏样本将增加频谱占用状态预测的难度。基于此,本课题以多维频谱占用状态为研究对象,以稀疏样本条件下多维频谱占用状态的获取为基本科学问题,提出了多维频谱数据的跨维度相关性建模方法,为后续的联合预测提供了模型基础。研究了频谱实测数据在时域、频域、空域各个维度的联合分布特性,为不同区域不同频段不同信号建立了通用的多维频谱相关性模型;分析了异常频谱数据对多维预测的影响,设计了数据净化算法,提高预测的可靠性;提出了“频谱张量”的概念来刻画多维频谱数据,对不完整的频谱张量的补全问题进行了数学建模,基于张量完成了理论的多维频谱联合预测方法,实现了稀疏样本条件下多维频谱联合预测性能提升。
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1109/cc.2015.7084388
发表时间:2015
期刊:China Communications
影响因子:4.1
作者:Wang Jinlong;Feng Shuo;Wu Qihui;Zheng Xueqiang;Xu Yuhua
通讯作者:Wang Jinlong;Feng Shuo;Wu Qihui;Zheng Xueqiang;Xu Yuhua
Spatial-temporal spectrum hole discovery: a hybrid spectrum sensing and geolocation database framework
时空频谱空洞发现:混合频谱感知和地理定位数据库框架
DOI:10.1007/s11434-014-0287-5
发表时间:2014-04
期刊:Chinese Science Bulletin
影响因子:--
作者:Ding, Guoru;Wu, Qihui;Shen, Liang;Song, Fei
通讯作者:Song, Fei
DOI:10.1109/jsac.2015.2452532
发表时间:2016-01-01
期刊:IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS
影响因子:16.4
作者:Ding, Guoru;Wang, Jinlong;Tsiftsis, Theodoros A.
通讯作者:Tsiftsis, Theodoros A.
DOI:10.3837/tiis.2014.04.003
发表时间:2013-10
期刊:2013 International Conference on Wireless Communications and Signal Processing
影响因子:--
作者:Changju Kan;Qi-hui Wu;Fei Song;Guoru Ding
通讯作者:Changju Kan;Qi-hui Wu;Fei Song;Guoru Ding
Robust Spectrum Sensing With Crowd Sensors
使用人群传感器进行稳健的频谱传感
DOI:10.1109/tcomm.2014.2346775
发表时间:2014-09-01
期刊:IEEE TRANSACTIONS ON COMMUNICATIONS
影响因子:8.3
作者:Ding, Guoru;Wang, Jinlong;Chen, Yingying
通讯作者:Chen, Yingying
国内基金
海外基金