基于非下采样Shearlet域统计建模的图像水印方法研究
批准号:
61701212
项目类别:
青年科学基金项目
资助金额:
26.0 万元
负责人:
牛盼盼
依托单位:
学科分类:
F0116.图像信息处理
结题年份:
2020
批准年份:
2017
项目状态:
已结题
项目参与者:
王向阳、张永、邹丽、刘洋、王春鹏、刘宇男、李硕
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
作为图像作品版权保护的有效手段,数字水印技术已成为国际学术界研究的一个热点。但目前绝大多数图像水印方案尚无法有效解决数字水印的不可感知性、鲁棒性、水印容量之间的平衡问题,即可有效保持三者良好平衡的高性能数字图像水印算法研究仍然是一项富有挑战性的工作。本项目将结合非下采样Shearlet变换理论,采用Cauchy统计建模技术,确定影响图像水印不可感知性、鲁棒性、水印容量良好平衡的关键因素,建立基于Cauchy统计模型的非下采样Shearlet域图像水印的整体系统。具体研究内容包括深入分析非下采样Shearlet系数的统计特性;构造自适应于图像内容的高阶水印嵌入强度函数;充分利用非下采样Shearlet域的尺度内、方向间、尺度间等多种相关性建立局部最大势能检测器;给出基于多元Cauchy统计模型的水印检测器构造方法,最终建立起基于Cauchy统计模型的非下采样Shearlet域图像水印模型。
英文摘要
Digital data distribution on the internet has made researchers to pay special attention to copyright issues. Digital watermarks have been widely applied to different media contents such as videos, audios and images for the purpose of identifying the ownership. Various watermarking schemes have been proposed to protect the copyright information. A good image watermarking method should have some important traits such as imperceptibility, robustness and watermark capacity. Combining imperceptibility, robustness and watermark capacity has been a challenge for many years. .In order to maintain synchronously the imperceptibility, robustness and watermark capacity, the power of the watermark should be proportional to the corresponding image feature samples. The simplest way to implement this principle is by means of multiplicative watermarking. Since a disturbance proportional to the signal strength is more difficult to perceive, multiplicative methods can lead to stronger watermark embedding while keeping the quality of the watermarked image at an acceptable level. In order to employ fully the properties of the HVS, multiplicative watermarking is often used in the transform domain. Meanwhile, the Maximum Likelihood detections are usually designed by modeling the transform coefficients with Gaussian distribution, General Gaussian distribution, Laplace distributions, Cauchy distributions, Gauss-Hermite expansion, Weibull distribution, and Alpha-stable distribution, etc.. Through in-depth research and analysis, we can see that the multiplicative watermarking exhibit more promising than others in terms of trade-off between robustness and imperceptibility. However, there are some main drawbacks indwelled in current multiplicative image watermarking schemes: First, the adopted transforms have lower work efficiency to a different extent. To exploit the anisotropic regularity of image surface, several multiscale image representations have been proposed, such as Curvelet transform, Ridgelet transform, and Contourlet transform, but they cannot provide nearly optimal approximation for 2D image. Second, according to statistical decision theory, the accuracy of the statistical modeling of transform coefficients largely determines the actual performance of the watermark detection algorithm. But the existing multiplicative watermarking does not apply relatively accurate statistical model in describing the transform coefficients distributions..This project will identify the key factors for the non-orthogonality of these constraints, and proposed a blind multiplicative image watermarking in the Nonsubsampled Shearlet transform (NSST) domain using Cauchy statistical model. The main contents include: Analyze the statistical modeling of the NSST coefficients; Construct adaptive image content of higher-order watermark strength function; Construct locally optimal watermark detector by using locally most powerful test; Derive the locally optimal detector by using multivariate statistical model. The project will eventually build a blind multiplicative image watermark system in the NSST domain using Cauchy statistical model, and develop the corresponding image watermarking software.
作为图像作品版权保护的有效手段,数字水印技术已成为国际学术界研究的一个热点。但目前绝大多数图像水印方案尚无法有效解决数字水印的不可感知性、鲁棒性、水印容量之间的平衡问题,即可有效保持三者良好平衡的高性能数字图像水印算法研究仍然是一项富有挑战性的工作。本项目结合非下采样Shearlet变换理论,采用Cauchy统计建模技术,确定了影响图像水印不可感知性、鲁棒性、水印容量良好平衡的关键因素,建立了基于Cauchy统计模型的非下采样Shearlet域图像水印的整体系统。具体研究内容包括深入分析了非下采样Shearlet系数的统计特性;构造了自适应于图像内容的高阶水印嵌入强度函数;充分利用非下采样Shearlet域的尺度内、方向间、尺度间等多种相关性建立了局部最大势能检测器;给出了基于多元Cauchy统计模型的水印检测器构造方法,最终建立了基于Cauchy统计模型的非下采样Shearlet域图像水印模型。
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
Weibull statistical modeling for textured image retrieval using nonsubsampled contourlet transform
使用非下采样轮廓波变换进行纹理图像检索的威布尔统计建模
DOI:10.1007/s00500-018-3127-8
发表时间:2018-03
期刊:Soft Computing
影响因子:4.1
作者:Yang Hong ying;Liang Lin lin;Zhang Can;Wang Xue bing;Niu Pan pan;Wang Xiang yang
通讯作者:Wang Xiang yang
A blind watermark algorithm in SWT domain using bivariate generalized Gaussian distributions
基于二元广义高斯分布的SWT域盲水印算法
DOI:10.1007/s11042-019-08504-1
发表时间:2020-01
期刊:Multimedia Tools and Applications
影响因子:3.6
作者:Niu Pan-Pan;Wang Xiang-Yang;Yang Hong-Ying;Li Li
通讯作者:Li Li
Copy-move forgery detection based on compact color content descriptor and Delaunay triangle matching
基于紧凑颜色内容描述符和Delaunay三角形匹配的复制移动伪造检测
DOI:10.1007/s11042-018-6354-1
发表时间:2018-07
期刊:Multimedia Tools and Applications
影响因子:3.6
作者:Wang Xiang yang;Jiao Li xian;Wang Xue bing;Yang Hong ying;Niu Pan pan
通讯作者:Niu Pan pan
DOI:10.16383/j.aas.c190075
发表时间:2021
期刊:自动化学报
影响因子:--
作者:王向阳;牛盼盼;杨红颖;李丽
通讯作者:李丽
DOI:10.1007/s11042-020-09491-4
发表时间:2020-08
期刊:Multimedia Tools and Applications
影响因子:3.6
作者:Pan-pan Niu;Li Wang;Xin Shen;Qian Wang;Xiang-yang Wang
通讯作者:Pan-pan Niu;Li Wang;Xin Shen;Qian Wang;Xiang-yang Wang
国内基金
海外基金















{{item.name}}会员


