内类型理论
批准号:
69973030
项目类别:
面上项目
资助金额:
10.0 万元
负责人:
傅育熙
依托单位:
学科分类:
F0201.计算机科学的基础理论
结题年份:
2002
批准年份:
1999
项目状态:
已结题
项目参与者:
林敏、徐林、蒋翔宇、杨震荣、王应尽
关键词:
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
在申请人提出的逻辑框架的内可定义性基础上提出并研究内容型理论。主要研究内容包括:内容型理论的元性质、高阶多态演算的内可定义性、内容型理论的内逻辑刻划、内容型理鄣挠镆迥P汀1旧昵胂钅康难芯慷缘バ吐矶∨捣蚶嘈屠砺墼灾实难芯坑兄匾羰隆⒂兄诖由畈愦紊侠斫饫嘈屠砺壑械囊恍┮赡盐侍狻
英文摘要
Many open problems in type theory can be described in terms of internal definability. What internal definability deals with is type theory within type theory. We call internal type theory the one that studies type theory or encoding within type theory. From the point of view of category theory, a type system corresponds to a category or a fibration and an internal type system corresponds to an internal category or small fibration. Internal categories and small fibrations play very important roles in category theory and the theory of fibraiton. It is reasonable to expect that internal category theory should also play an equally important role in type theory. The present project has examined these basic problems in internal type theory. The main achievements of the project are:.(1) Characterization of properties of internal type systems in terms of internal logic. The general idea is similar to that of Calculus of Constructions. An internal logic is introduced in logical framework to describe internal properties of internal type systems. Our result shows that the relationship between a logical framework and encoding within the framework is the same as that between a category and internal category defined within the category.(2) Semantic models of internal type systems. The key result is a generalization of the fibration models so that they are equipped with a notion of internal equality. This internal equality is used to model definitional equalities of internal type systems. (3) Internal definability between polymorphic lambda calculi. The main result is that the n-th order polymorhic lambda calculus is internally definable in the (n+1)-th order polymorphic lambda calculus.Under the support of this project, we have also organized three workshops: BASICS'00, BASICS02 and APLAS'02.
专著列表
科研奖励列表
会议论文列表
专利列表
VASS可达性的算法研究
- 批准号:62072299
- 项目类别:面上项目
- 资助金额:56万元
- 批准年份:2020
- 负责人:傅育熙
- 依托单位:
无穷状态系统等价性验证
- 批准号:61772336
- 项目类别:面上项目
- 资助金额:63.0万元
- 批准年份:2017
- 负责人:傅育熙
- 依托单位:
进程理论中的否定结果研究
- 批准号:61472239
- 项目类别:面上项目
- 资助金额:80.0万元
- 批准年份:2014
- 负责人:傅育熙
- 依托单位:
M-可解性、M-计算复杂性与计算机科学的模型理论
- 批准号:61033002
- 项目类别:重点项目
- 资助金额:200.0万元
- 批准年份:2010
- 负责人:傅育熙
- 依托单位:
进程演算的表达能力研究
- 批准号:60873034
- 项目类别:面上项目
- 资助金额:30.0万元
- 批准年份:2008
- 负责人:傅育熙
- 依托单位:
灰箱演算的公平性和匿名性研究
- 批准号:60573002
- 项目类别:面上项目
- 资助金额:25.0万元
- 批准年份:2005
- 负责人:傅育熙
- 依托单位:
基于进程代数的电子商务协议形式化研究
- 批准号:60473006
- 项目类别:面上项目
- 资助金额:20.0万元
- 批准年份:2004
- 负责人:傅育熙
- 依托单位:
并发计算模型X-演算的理论研究
- 批准号:69873032
- 项目类别:面上项目
- 资助金额:11.0万元
- 批准年份:1998
- 负责人:傅育熙
- 依托单位:
逻辑类型理论的语义及其应用
- 批准号:69503006
- 项目类别:青年科学基金项目
- 资助金额:10.0万元
- 批准年份:1995
- 负责人:傅育熙
- 依托单位:
国内基金
海外基金















{{item.name}}会员


