基于深度残差网络的单幅大倍率超分辨率重建模型研究
结题报告
批准号:
61901221
项目类别:
青年科学基金项目
资助金额:
23.0 万元
负责人:
谢超
依托单位:
学科分类:
F0116.图像信息处理
结题年份:
2022
批准年份:
2019
项目状态:
已结题
项目参与者:
--
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
超分辨率重建是一种增强图像分辨率的有效技术,应用十分广泛。在该领域中,单幅图像的大倍率重建是现今难点,问题的困难在于大量高频信息的丢失以及重建前后图像空间尺度的极度不匹配。因此,本项目将围绕基于深度残差网络的单幅大倍率超分辨率重建模型展开研究。首先,通过构建可训练的逐步上采样机制同时配合数据流形简化思想,研究一种后置上采样的特征空间学习方法,有效缓解重建图像间的不匹配性,提升模型估计准确度及重建效果。其次,验证模型中BN结构的冗余性,以优化残差重建网络的现有结构,并从深度、宽度、通道配置等方面对网络中卷积成分进行升级拓展,构建一种增强的深度残差网络模型,提升网络规模及表现能力。最后,为打破传统损失函数的局限,研究设计基于视觉感知的损失函数,该损失同时考虑图像的局部结构变化和单个像素偏差,能够提升训练后网络的性能及鲁棒性。通过以上研究,将形成一种解决单幅大倍率超分辨率重建问题的新方法。
英文摘要
Super-resolution reconstruction is an effective technique to enhance image resolution and therefore has a wide range of practical applications. The current challenge of this area lies in the handling of single image super-resolution at large upscaling factors. Its difficulties are derived from both the loss of a large amount of high-frequency information and the space and scale mismatch between the images before and after reconstruction. Therefore, this project will focus on the research on single image super-resolution reconstruction model at large upscaling factors based on deep residual network. Firstly, to effectively alleviate the mismatch between the images before and after reconstruction, a post-sampling and feature-space-learning-based method is studied by the construction of a trainable stepwise upsampling mechanism and the usage of data manifold simplification, so as to improves the model prediction accuracy and reconstruction performance. Secondly, the redundancy of the BN structure in the network is verified in order to optimize the existing structure of the residual reconstruction network. Meanwhile, the convolutional layers of the network are upgraded and enlarged from the aspects of their depth, width and channel configuration. Based on this, an enhanced deep residual network is built, which will have larger size and improved performance. Finally, in order to break the limitation of the conventional loss function, a visual-perception-based loss function is designed. This loss considers the changes in the local structures and in each single pixel simultaneously. In doing so, it can improve the performance and robustness of the network after training. Through the above research, a novel method that can solve the problem of single image super-resolution reconstruction at large upscaling factors will be formed.
超分辨率重建是一种增强图像分辨率的有效技术,应用十分广泛。在该领域中,单幅图像的大倍率重建是现今难点,问题的困难在于大量高频信息的丢失以及重建前后图像空间尺度的极度不匹配。因此,本项目围绕基于深度残差网络的单幅大倍率超分辨率重建模型展开研究,主要研究进展包括:(1)构建了一种后置上采样的特征空间学习方法,有效缓解重建图像间的不匹配性,提升模型估计准确度及重建效果;(2)优化了残差重建网络的现有结构,据此提出了一种增强的深度残差网络模型,提升网络规模及表现能力;(3)设计了一种基于视觉感知损失函数的生成对抗式训练方法,打破传统损失函数的局限;同时,围绕项目相关扩展及应用问题:(4)提出了一种两段式卷积神经网络模型,有效解决零样本学习低照度图像增强中的色彩失真和噪声干扰问题;(5)探索了项目核心成果在林业特色领域中的应用,主要涵盖了工程竹材裂纹检测和林业遥感图像增强等两方面。本项目研究形成了一种解决单幅大倍率超分辨率重建问题的新方法。.整体来说,本项目完成了预定的研究内容,并在此基础上做出了进一步的扩展。在项目资助下,共计发表学术论文17篇,其中SCI期刊论文13篇,中文期刊论文4篇。申请国家发明专利5项,其中已授权1项。登记软件著作权2项。
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:--
发表时间:2022
期刊:林业机械与木工设备
影响因子:--
作者:刘铮;刘英;庄子龙;谢超
通讯作者:谢超
Driver Drowsiness Recognition via 3D Conditional GAN and Two-Level Attention Bi-LSTM
通过 3D 条件 GAN 和两级注意力 Bi-LSTM 进行驾驶员睡意识别
DOI:10.1109/tcsvt.2019.2958188
发表时间:2020-12-01
期刊:IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
影响因子:8.4
作者:Hu, Yaocong;Lu, Mingqi;Lu, Xiaobo
通讯作者:Lu, Xiaobo
DOI:10.3390/f13111896
发表时间:2022-11
期刊:Forests
影响因子:2.9
作者:Zhou Haiyan;Liu Ying;Liu Zheng;Zhuang Zilong;Wang Xu;Gou Binli
通讯作者:Gou Binli
An Improved Algorithm for Low-Light Image Enhancement Based on RetinexNet
基于RetinexNet的弱光图像增强改进算法
DOI:10.3390/app12147268
发表时间:2022-07-01
期刊:APPLIED SCIENCES-BASEL
影响因子:2.7
作者:Tang, Hao;Zhu, Hongyu;Xie, Chao
通讯作者:Xie, Chao
FIN-GAN: Face illumination normalization via retinex-based self-supervised learning and conditional generative adversarial network
FIN-GAN:通过基于 Retinex 的自监督学习和条件生成对抗网络进行面部照明标准化
DOI:10.1016/j.neucom.2021.05.063
发表时间:2021
期刊:Neurocomputing
影响因子:6
作者:Yaocong Hu;Mingqi Lu;Chao Xie;Xiaobo Lu
通讯作者:Xiaobo Lu
国内基金
海外基金